Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 185-198.doi: 10.16088/j.issn.1001-6600.2025032101

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Spatial and Temporal Characteristics and Driving Factors of Urban Heat Island in Pinglu Canal Economic Belt, China

TAN Minhui 1, XIE Ling1,2,3*, HUANG Yuhang1, LU Hui1,2   

  1. 1. School of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Environment Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Guangxi Canal Research Institute (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2025-03-21 Revised:2025-05-19 Online:2026-01-05 Published:2026-01-26

Abstract: In response to the urban heat island problem caused by the rapid urbanization development of the Pinglu Canal Economic Belt. Based on the GEE platform, and by using spatiotemporal cube models, emerging spatiotemporal hotspot analysis, and spatial analysis methods, this article aims to study the spatiotemporal evolution characteristics and driving factors of urban heat islands in the Pinglu Canal Economic Belt from 2010 to 2020. The following conclusions can be drawn: 1) The proportion of high-temperature areas in core cities increased from 10% in 2010 to 21% in 2020, with newly added high-temperature patches transformed from medium temperature areas. 2) Emerging hotspot analysis identified 17 spatiotemporal patterns of cold hotspots, with the exception of Fangchenggang City, the other four cities showing significant new hot spots around the built-up areas, ranked in the order of Beihai City>Nanning City>Qinzhou City>Guigang City; 3) The intensity of the urban heat island had significant spatial autocorrelation, with high to high clustering overlapping highly with impermeable surfaces. The intensity of the urban heat island was highly matched with land use types in space, such as the average surface temperature of impermeable surfaces and bare land being higher, while the average surface temperature of water bodies was the lowest; 4) In 2020, the order of the impact of the three driving factors on urban heat island effect was NDVI>DEM>POP. The dual factor interaction was most strongly driven by the combination of NDVI and DEM. This study has important scientific implications for how cities in the Pinglu Canal Economic Belt can cope with the intensified heat wave risk, and contributes to exploring the comprehensive mechanism of urban heat island formation in the Pinglu Canal Economic Belt.

Key words: urban heat island, spatiotemporal characteristics, spatial autocorrelation, geographic detector, driving factors, Pinglu Canal Economic Belt, China

CLC Number:  X16; X14
[1] 肖荣波, 欧阳志云, 李伟峰, 等. 城市热岛的生态环境效应[J]. 生态学报, 2005, 25(8): 2055-2060. DOI: 10.3321/j.issn:1000-0933.2005.08.032.
[2] 李国平, 孙瑀. 面向2030年的中国城镇化及其区域差异态势分析[J]. 区域经济评论, 2020(4): 72-81. DOI: 10.14017/j.cnki.2095-5766.2020.0074.
[3] 唐伟超, 王黎俊, 史美纯, 等. 1990—2019年我国城市风热环境的演变分析[J]. 河南大学学报(自然科学版), 2023, 53(6): 657-670. DOI: 10.15991/j.cnki.411100.2023.06.009.
[4] GODDARD I L M, TETT S F B. How much hasurbanisation affected United Kingdom temperatures?[J]. Atmospheric Science Letters, 2019, 20(5): e896. DOI: 10.1002/asl.896.
[5] 邱国玉, 张晓楠. 21世纪中国的城市化特点及其生态环境挑战[J]. 地球科学进展, 2019, 34(6): 640-649. DOI: 10.11867/j.issn.1001-8166.2019.06.0640.
[6] 李宇, 周德成, 闫章美. 中国84个主要城市大气热岛效应的时空变化特征及影响因子[J]. 环境科学, 2021, 42(10): 5037-5045. DOI: 10.13227/j.hjkx.202102003.
[7] 黄聚聪, 赵小锋, 唐立娜, 等. 城市化进程中城市热岛景观格局演变的时空特征: 以厦门市为例[J]. 生态学报, 2012, 32(2): 622-631. DOI: 10.5846/stxb201012071745.
[8] 曹畅, 李旭辉, 张弥, 等. 中国城市热岛时空特征及其影响因子的分析[J]. 环境科学, 2017, 38(10): 3987-3997. DOI: 10.13227/j.hjkx.201702127.
[9] 高运翔, 栗珂珂, 张文婷, 等. 共享社会经济路径下中国城市热岛时空演变及预测研究[J]. 气候变化研究进展, 2023, 19(4): 431-445. DOI: 10.12006/j.issn.1673-1719.2022.266.
[10] 姚从容. 城市化进程中人口变动对气候变化的影响机制: 理论框架与协整检验[J]. 城市发展研究, 2012, 19(10): 86-91, 103. DOI: 10.3969/j.issn.1006-3862.2012.10.016.
[11] 黄良美, 黄海霞, 项东云, 等. 南京市四种下垫面气温日变化规律及城市热岛效应[J]. 生态环境, 2007, 16(5): 1411-1420. DOI: 10.16258/j.cnki.1674-5906.2007.05.028.
[12] 张建明, 王鹏龙, 马宁, 等. 河谷地形下兰州市城市热岛效应的时空演变研究[J]. 地理科学, 2012, 32(12): 1530-1537. DOI: 10.13249/j.cnki.sgs.2012.12.015.
[13] 赵志敏. 城市化进程对城市热岛效应因子的对比分析[J]. 中国环境监测, 2008, 24(6): 77-79. DOI: 10.19316/j.issn.1002-6002.2008.06.018.
[14] YUAN H, CHEN Y L, ZHANG Y P, et al. Urban sprawl and thermal response in the Guangdong-Hong Kong-Macao Greater Bay Area, 2000-2020[J]. Environmental Research Communications, 2024, 6(8): 085022. DOI: 10.1088/2515-7620/ad6cab.
[15] 张熙涛, 周德成. 典型生态城市1990—2020年地表热环境的时空演变及其预测[J]. 环境科学, 2025, 46(8): 5196-5205. DOI: 10.13227/j.hjkx.202407004.
[16] 乌达木, 郝润梅, 王考, 等. 基于多源遥感数据的呼和浩特城市热岛调控优先区识别研究[J]. 干旱区资源与环境, 2023, 37(4): 117-126. DOI: 10.13448/j.cnki.jalre.2023.094.
[17] HAN D R, AN H M, CAI H Y, et al. How do 2D/3D urban landscapes impact diurnal land surface temperature: insights from block scale and machine learning algorithms[J]. Sustainable Cities and Society, 2023, 99: 104933. DOI: 10.1016/j.scs.2023.104933.
[18] 何宝杰, 尹名强. 应对城市高温的国际总体行动、策略与指南[J]. 国际城市规划, 2024, 39(3): 98-108. DOI: 10.19830/j.upi.2022.340.
[19] 贾若愚, 刘洛, 徐新良, 等. 2005—2020年逐年1 km中国夏季地表城市热岛空间数据集及空间扩张分析[J]. 西部人居环境学刊, 2024, 39(6): 149-154. DOI: 10.13791/j.cnki.hsfwest.20240621.
[20] 刘宁. 以平陆运河为牵引的西部陆海新通道水运体系和联运模式研究[J]. 水利水运工程学报, 2025(1): 1-15. DOI: 10.12170/20241130002.
[21] 刘晓玲, 王桃, 吴晓磊. 平陆运河建设对西南部地区货运出海格局的影响[J]. 水运工程, 2023(11): 15-22. DOI: 10.16233/j.cnki.issn1002-4972.20231106.016.
[22] 王郁, 胡非. 近10年来北京夏季城市热岛的变化及环境效应的分析研究[J]. 地球物理学报, 2006, 49(1): 61-68. DOI: 10.3321/j.issn:0001-5733.2006.01.009.
[23] 李梦秋, 石含宁, 杨树文. 基于Landsat影像的南京市城市扩张与热岛效应响应关系研究[J]. 农业与技术, 2023, 43(20): 96-102. DOI: 10.19754/j.nyyjs.20231030021.
[24] 乔治, 田光进. 基于MODIS的2001—2012年北京热岛足迹及容量动态监测[J]. 遥感学报, 2015, 19(3): 476-484. DOI: 10.11834/jrs.20154165.
[25] 陈岑, 梁德庄, 杨俊, 等. 基于CNKI文献计量的地表城市热岛效应研究方法综述[J]. 应用生态学报, 2025, 36(3): 647-658. DOI: 10.13287/j.1001-9332.202503.029.
[26] YANG J, HUANG X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925. DOI: 10.5194/essd-13-3907-2021.
[27] JIANG H P, SUN Z C, GUO H D, et al. A standardized dataset of built-up areas of China’s cities with populations over 300 000 for the period 19902015[DS/OL]. V1. Science Data Bank, 2021[2025-01-11]. https://cstr.cn/31253.11.sciencedb.j00076.00004.CSTR:31253.11.sciencedb.j00076.00004.
[28] 姚灵筠, 王力, 牛铮, 等. 2000—2018年长株潭城市群城市扩张及其热岛响应[J]. 自然资源遥感, 2024, 36(1): 162-168. DOI: 10.6046/zrzyyg.2024490
[29] 王天星, 陈松林, 阎广建. 地表参数反演及城市热岛时空演变分析[J]. 地理科学, 2009, 29(5): 697-702. DOI: 10.13249/j.cnki.sgs.2009.05.016.
[30] ZHANG J M, LIN T, SUN C G, et al. Long-term spatiotemporal characteristics and impact factors of land surface temperature of inhabited islands with different urbanization levels[J]. Remote Sensing, 2022, 14(19): 4997. DOI: 10.3390/rs14194997.
[31] 刘宸瑄, 王丽群, 许行, 等. 2001—2021年中国植被覆盖对夏季城市热岛效应的影响[J]. 生态学报, 2024, 44(24): 11020-11034. DOI: 10.20103/j.stxb.202401210183.
[32] 梁保平, 李艺, 刘庆业. 典型植被指数与地表温度空间特征分析: 以桂林市为例[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 132-137. DOI: 10.16088/j.issn.1001-6600.2012.02.016.
[33] 陶煜, 刘宛. 北京市主城区地表城市热岛强度格局演变特征及驱动因子空间异质性[J]. 环境科学, 2025, 46(6): 3985-3998. DOI: 10.13227/j.hjkx.202405264.
[34] 彭少麟, 周凯, 叶有华, 等. 城市热岛效应研究进展[J]. 生态环境, 2005, 14(4): 574-579.
[35] 马安青, 马冰然, 张震, 等. 滨海城市热环境驱动因素分析: 以青岛地区为例[J]. 中国海洋大学学报(自然科学版), 2016, 46(4): 109-117. DOI: 10.16441/j.cnki.hdxb.20150124.
[36] 曹爱丽, 张浩, 张艳, 等. 上海近50年气温变化与城市化发展的关系[J]. 地球物理学报, 2008, 51(6): 1663-1669. DOI: 10.3321/j.issn:0001-5733.2008.06.006.
[37] PURWANTO P, UTAYA S, HANDOYO B, et al. Spatiotemporalanalysis of COVID-19 spread with emerging hotspot analysis and space-time cube models in east Java, indonesia[J]. ISPRS International Journal of Geo-Information, 2021, 10(3): 133. DOI: 10.3390/ijgi10030133.
[38] 张棋, 许德合, 丁严. 基于SPEI和时空立方体的中国近40年干旱时空模式挖掘[J]. 干旱地区农业研究, 2021, 39(3): 194-201. DOI: 10.7606/j.issn.1000-7601.2021.03.24.
[39] GETIS A, ORD J K. The analysis of spatial association by use of distance statistics[J]. Geographical Analysis, 1992, 24(3): 189-206. DOI: 10.1111/j.1538-4632.1992.tb00261.x.
[40] CHENG Z Y, ZU Z S, LU J. Trafficcrash evolution characteristic analysis and spatiotemporal hotspot identification of urban road intersections[J]. Sustainability, 2019, 11(1): 160. DOI: 10.3390/su11010160.
[41] 汪金辉, 周雨, 张睿卿, 等. 全球气体运输船事故的时空热点研究[J]. 安全与环境学报, 2022, 22(2): 1106-1112. DOI: 10.13637/j.issn.1009-6094.2020.1794.
[42] 陈彦光. 基于Moran统计量的空间自相关理论发展和方法改进[J]. 地理研究, 2009, 28(6): 1449-1463. DOI: 10.11821/jy2009060002.
[43] 郭芸, 范柏乃, 龙剑. 我国区域高质量发展的实际测度与时空演变特征研究[J]. 数量经济技术经济研究, 2020, 37(10): 118-132. DOI: 10.13653/j.cnki.jqte.2020.10.007.
[44] WANG J F, LI X H, CHRISTAKOS G, et al. Geographicaldetectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010, 24(1): 107-127. DOI: 10.1080/13658810802443457.
[45] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134. DOI: 10.11821/dlxb201701010.
[46] 廖朝莲, 周鹏飞, 叶江霞, 等. 滇中地区地表温度时空分布及其驱动因子分析[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 185-200. DOI: 10.16088/j.issn.1001-6600.2024053001.
[47] 裔传祥, 胡继超, 李小军. 土地覆盖类型对城市热岛效应的响应分析[J]. 测绘通报, 2018(1): 72-76, 116. DOI: 10.13474/j.cnki.11-2246.2018.0013.
[48] 田浩, 刘琳, 张正勇, 等. 2001—2020年中国地表温度时空分异及归因分析[J]. 地理学报, 2022, 77(7): 1713-1729. DOI: 10.11821/dlxb202207010.
[49] 赵冰, 毛克彪, 蔡玉林, 等. 中国地表温度时空演变规律研究[J]. 国土资源遥感, 2020, 32(2): 233-240. DOI: 10.6046/gtzyyg.2020.02.30.
[50] 高秀丽, 曾伟业. 基于夜间灯光数据的北部湾城市群空间扩张及驱动力研究[J]. 时空信息学报, 2023, 30(3): 400-409. DOI: 10.20117/j.jsti.202303012.
[51] 廖春贵, 胡宝清, 熊小菊, 等. 广西植被时空变化及其对气候响应[J]. 森林与环境学报, 2018, 38(2): 178-184. DOI: 10.13324/j.cnki.jfcf.2018.02.008.
[52] 林荣平, 祁新华, 叶士琳. 沿海河谷盆地城市热岛时空特征及驱动机制[J]. 生态学报, 2017, 37(1): 294-304. DOI: 10.5846/stxb201607251516.
[53] 廖春贵, 陈月连, 熊小菊, 等. 2007—2016年广西植被覆盖时空分布特征及其驱动因素[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 118-127. DOI: 10.16088/j.issn.1001-6600.2018.02.017.
[54] 谭显春, 戴瀚程, 顾佰和, 等. IPCC AR6报告历史排放趋势和驱动因素核心结论解读[J]. 气候变化研究进展, 2022, 18(5): 538-545. DOI: 10.12006/j.issn.1673-1719.2022.153.
[1] YANG Xiaolan, ZHANG Huiguo, HU Xijian. Local Maximum Likelihood Estimation of Heterogeneous Features with Spatial Autocorrelation and Its Application in Protection of Hand-Foot-Mouth Disease [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 179-192.
[2] LIAO Chaolian, ZHOU Pengfei, YE Jiangxia, ZHOU Ruliang. Temporal and Spatial Distribution of Land Surface Temperature and Its Driving Factors in Central Yunnan [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 185-200.
[3] SHI Yuanyuan, ZHAO Junyu, SONG Xianchong, QIN Zuoyu, TANG Jian. Environmental Driving Factors and Quality Evaluation of Soil Fertility Index in Plantation Based on Canonical Correspondence Analysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 192-201.
[4] ZHU Bailu, YANG Qiyong, XIE Yunqiu, DENG Yan, TANG Meirong, LIU Dacun, ZENG Hongchun. Spatial Distribution and Driving Factors of Karst Rocky Desertification in Lijiang River Basin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 139-150.
[5] ZHU Kaini, SHI Shuqin, YU Wentao, HE Yingbin. Change and Driving Forces of Ecological Land Use in Beijing-Tianjin-Hebei Junction Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 153-162.
[6] XU Yanting,LIU Xingzhao,WANG Zhenbo. Spatial-temporal Distribution Characteristics of Air Quality in Chinese Cities Based on the AQI Index [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 187-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[6] HUANG Yanguo, XIAO Jie, WU Shuiqing. Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 10 -22 .
[7] LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23 -32 .
[8] ZHANG Zhulu, LI Huaqiang, LIU Yang, XU Lixiong. Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 33 -44 .
[9] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[10] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56 -67 .