Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 215-226.doi: 10.16088/j.issn.1001-6600.2025021302

• Ecology and Environmental Science Research • Previous Articles     Next Articles

Ecosystem Service Flow Based on Breakpoint-Field Strength Model ——Take the Pinglu Canal Economic Belt as an Example

XIE Ling1,2,3*, HUANG Yuhang1, TAN Minhui2, CHEN Zhantu1,2*   

  1. 1. Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), Guilin Guangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. Guangxi Canal Research Institute (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2025-02-13 Revised:2025-04-10 Online:2026-01-05 Published:2026-01-26

Abstract: Ecosystem service flow is related to the healthy development of regional natural ecosystems and human well-being. From the perspective of ecosystem service supply and demand, studying ecosystem service flow in the Pinglu Canal Economic Belt is the basis for finding the construction of the ecological canal and the high-quality development of the economic belt. In this paper, the potential supply of ecosystem services is estimated by an equivalent factor, and the demand index of ecosystem services is constructed to calculate the demand for ecosystem services based on population density and average land GDP, so as to determine the supply and demand ratio of ecosystem services in Pinglu Canal Economic Belt in 2000, 2010 and 2020. The breakpoint-field strength model was used to quantify the flow and intensity of ecosystem service flows. The results show that: 1) During the past 20 years, the supply value of ecosystem services in the study area had little change (increasing from 267.6 billion yuan in 2000 to 275.3 billion yuan in 2020) and is in a spatial stable state, with the lowest value being 200 million yuan in Haicheng District in 2000 and the highest value being 22.5 billion yuan in Guiping in 2020. The districts under the jurisdiction of Nanning are the agglomeration areas with a strong demand for ecosystem services. 2) During the study period, the demand for ecosystem services increased continuously, from 40 665 people · yuan /km2 in 2000 to 57 682 people · yuan /km2 in 2020. The demand for ecosystem services formed three high-value clusters in the districts under the jurisdiction of Nanning, Guigang and Beihai, with the supply-demand ratio above -1 for most of them. 3) During the study period, the ecosystem flow intensity of the Pinglu Canal Economic Belt generally increased to a stable trend, and the ecosystem service flow increased from 19.813 billion yuan in 2000 to 21.4 billion yuan in 2010, and slightly decreased to 21.16 billion yuan in 2020. Guiping of Guigang is an important ecosystem service supply area. In 2000,2010 and 2020, the ecosystem service flows exported by Guiping are respectively, and the situation of ecosystem supply/deficit in each region is becoming increasingly significant.

Key words: ecosystem service flow, breaking point model, field strength model, Pinglu Canal Economic Belt

CLC Number:  X87;X82
[1] 孙梓渊, 王赛鸽, 陈彬. 基于生态系统服务的生态安全格局构建与生态韧性评估: 以长株潭城市群为例[J]. 生态学报, 2024, 44(11): 4650-4661. DOI: 10.20103/j.stxb.202307131507.
[2] COSTANZA R, DE GROOT R, BRAAT L, et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go?[J]. Ecosystem Services, 2017, 28: 1-16. DOI: 10.1016/j.ecoser.2017.09.008.
[3] Millennium Ecosystem Assessment. Ecosystems and human well-being: synthesis[M]. Washington, DC: Island Press, 2005.
[4] 欧阳志云, 王如松. 生态系统服务功能、生态价值与可持续发展[J]. 世界科技研究与发展, 2000, 22(5): 45-50. DOI: 10.16507/j.issn.1006-6055.2000.05.010.
[5] 杨正忠, 徐昔保, 李景宜, 等. 生态系统服务流研究进展与展望[J]. 生态与农村环境学报, 2023, 39(7): 827-838. DOI: 10.19741/j.issn.1673-4831.2022.0306.
[6] 刘春芳, 王佳雪, 许晓雨. 基于生态系统服务流视角的生态补偿区域划分与标准核算: 以石羊河流域为例[J]. 中国人口·资源与环境, 2021, 31(8): 157-165. DOI: 10.12062/cpre.20210117.
[7] 申嘉澍, 李双成, 梁泽, 等. 生态系统服务供需关系研究进展与趋势展望[J]. 自然资源学报, 2021, 36(8): 1909-1922. DOI: 10.31497/zrzyxb.20210801.
[8] WU X T, WANG S, FU B J, et al. Land use optimization based on ecosystem service assessment: a case study in the Yanhe watershed[J]. Land Use Policy, 2018, 72: 303-312. DOI: 10.1016/j.landusepol.2018.01.003.
[9] 马琳, 刘浩, 彭建, 等. 生态系统服务供给和需求研究进展[J]. 地理学报, 2017, 72(7): 1277-1289. DOI: 10.11821/dlxb201707012.
[10] 夏沛, 彭建, 徐子涵, 等. 生态系统服务流概念内涵与量化方法[J]. 地理学报, 2024, 79(3): 584-599. DOI: 10.11821/dlxb202403003.
[11] 李征远, 李胜鹏, 曹银贵, 等. 生态系统服务供给与需求: 基础内涵与实践应用[J]. 农业资源与环境学报, 2022, 39(3): 456-466. DOI: 10.13254/j.jare.2021.0683.
[12] 王嘉丽, 周伟奇. 生态系统服务流研究进展[J]. 生态学报, 2019, 39(12): 4213-4222.
[13] 赵雪雁, 马平易, 李文青, 等. 黄土高原生态系统服务供需关系的时空变化[J]. 地理学报, 2021, 76(11): 2780-2796. DOI: 10.11821/dlxb202111013.
[14] 张家其, 朱莉, 阳斌成. 洞庭湖流域生态系统服务供需时空演变与情景预测[J]. 长江流域资源与环境, 2024, 33(8): 1702-1714. DOI: 10.11870/cjlyzyyhj202408009.
[15] LIN J Y, HUANG J L, HADJIKAKOU M, et al. Reframing water-related ecosystem services flows[J]. Ecosystem Services, 2021, 50: 101306. DOI: 10.1016/j.ecoser.2021.101306.
[16] KLEEMANN J, SCHRÖTER M, BAGSTAD K J, et al. Quantifying interregional flows of multiple ecosystem services: a case study for Germany[J]. Global Environmental Change, 2020, 61: 102051. DOI: 10.1016/j.gloenvcha.2020.102051.
[17] 黎永豪, 张安录, 张宇, 等. 生态系统服务流视角下武汉城市圈横向生态补偿研究[J]. 长江流域资源与环境, 2025, 34(1): 111-125. DOI: 10.11870/cjlyzyyhj202501009.
[18] 卢慧婷, STRINGER LINDSAY C, 严岩, 等. 西南地区生态系统服务供需历史变化与SSP-RCP情景预测[J]. 生态学报, 2023, 43(4): 1309-1325. DOI: 10.5846/stxb202202090318.
[19] QU C, XU J, LI W, et al. Integrating circuit theory and network modeling to identify ecosystem carbon sequestration service flow networks[J]. Ecological Informatics, 2025, 87: 103077. DOI: 10.1016/j.ecoinf.2025.103077.
[20] LIU W, ZHAN J Y, ZHAO F, et al. The tradeoffs between food supply and demand from the perspective of ecosystem service flows: a case study in the Pearl River Delta, China[J]. Journal of Environmental Management, 2022, 301: 113814. DOI: 10.1016/j.jenvman.2021.113814.
[21] MOLLA SITOTAW T, WILLEMEN L, TSEGAYE MESHESHA D, et al. Empirical assessments of small-scale ecosystem service flows in rural mosaic landscapes in the Ethiopian Highlands[J]. Ecosystem Services, 2024, 67: 101622. DOI: 10.1016/j.ecoser.2024.101622.
[22] DU H Q, ZHAO L, ZHANG P T, et al. Ecological compensation in the Beijing-Tianjin-Hebei region based on ecosystem services flow[J]. Journal of Environmental Management, 2023, 331: 117230. DOI: 10.1016/j.jenvman.2023.117230.
[23] CHEN J Y, JIANG B, BAI Y, et al. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation[J]. Science of the Total Environment, 2019, 650: 1426-1439. DOI: 10.1016/j.scitotenv.2018.09.126.
[24] 张燕. 平陆运河经济带产业发展的历史逻辑、现实意义与发展路径[J]. 社会科学家, 2024(5): 129-134. DOI: 10.3969/j.issn.1002-3240.2024.05.017.
[25] 文少强, 胡宝清, 谢薇薇, 等. 基于PLUS-InVEST模型的平陆运河经济带土地利用情景模拟及生境质量变化[J]. 环境科学, 2025, 46(8): 5122-5133. DOI: 10.13227/j.hjkx.202407166.
[26] 谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30(8): 1243-1254.
[27] 翟天林, 王静, 金志丰, 等. 长江经济带生态系统服务供需格局变化与关联性分析[J]. 生态学报, 2019, 39(15): 5414-5424. DOI: 10.5846/stxb201808261825.
[28] 吴健生, 罗可雨, 马洪坤, 等. 基于生态系统服务与引力模型的珠三角生态安全与修复格局研究[J]. 生态学报, 2020, 40(23): 8417-8429. DOI: 10.5846/stxb202003150550.
[29] 邓丽明, 杨骥, 尹小玲, 等. 粤港澳大湾区生态系统服务供需关系及其对城市化多空间尺度的响应[J]. 生态学报, 2024, 44(20): 9094-9107. DOI: 10.20103/j.stxb.202312312884.
[30] LIU M, FAN J P, WANG Y T, et al. Study on ecosystem service value (ESV) spatial transfer in the central plains urban agglomeration in the Yellow River Basin, China[J]. International Journal of Environmental Research and Public Health, 2021, 18(18): 9751. DOI: 10.3390/ijerph18189751.
[31] 谭莹莹, 蒋瑜, 周绍齐. 旅游城市生态系统服务价值的时空演变: 以桂林市为例[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 133-149. DOI: 10.16088/j.issn.1001-6600.2024042202.
[32] XIE L, WANG H W, LIU S H. The ecosystem service values simulation and driving force analysis based on land use/land cover: a case study in inland rivers in arid areas of the Aksu River Basin, China[J]. Ecological Indicators, 2022, 138: 108828. DOI: 10.1016/j.ecolind.2022.108828.
[33] 贾艳红, 黄俊忠, 吴春竹, 等. 基于PLUS-InVEST模型的漓江流域生态系统服务多情景评估研究[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 156-169. DOI: 10.16088/j.issn.1001-6600.2024071205.
[34] LI J, WANG X, ZHANG Y, et al. Stability of ecosystem services supply in southern China under natural and anthropogenic influences[J]. Ecological Indicators,2020,110: 105887. DOI: 10.1016/j.ecolind.2019.105887.
[35] 王悦露, 董威, 张云龙, 等. 基于生态系统服务的生态安全研究进展[J]. 生态学报, 2023, 43(19): 7821-7829. DOI: 10.20103/j.stxb.202210283063.
[36] 罗盛锋, 闫文德. 广西北部湾沿岸地区生态系统服务价值变化及其驱动力[J]. 生态学报, 2018, 38(9): 3248-3259. DOI: 10.5846/stxb201704050578.
[37] 丘海红, 胡宝清, 张泽. 基于土地利用变化的广西近20年生态系统服务价值研究[J]. 环境工程技术学报, 2022, 12(5): 1455-1465. DOI: 10.12153/j.issn.1674-991X.20210352.
[38] CHEN W, CHI G, LI J, et al. Ecosystem service demands in urbanizing regions: a case study of the Yangtze River Delta, China[J]. Sustainability, 2019, 11(3): 712. DOI: 10.3390/su11030712.
[39] ZHANG L F, LIU X, LI Y T, et al. Spatial patterns and driving forces of ecosystem service demand in urban agglomerations: a case study of the Beijing-Tianjin-Hebei region[J]. Ecological Economics,2021,180: 106878 DOI: 10.1016/j.ecolecon.2020.106878.
[40] LEI M, MA G X, YU F, et al. Study on the ecosystem service flow based on the relationship of between supply and demand in Yangtze River Economic Belt[J]. Frontiers in Earth Science, 2024, 12: 1432037. DOI: 10.3389/feart.2024.1432037.
[41] 杨开忠, 李少鹏, 董亚宁, 等. 纳入水资源利用量配置变化的流域生态补偿机制[J]. 中国人口·资源与环境, 2022, 32(11): 184-197. DOI: 10.12062/cpre.20220905.
[42] 侯鹏, 王桥, 申文明, 等. 生态系统综合评估研究进展: 内涵、框架与挑战[J]. 地理研究, 2015, 34(10): 1809-1823. DOI: 10.11821/dlyj201510001.
[1] TAN Minhui , XIE Ling, HUANG Yuhang, LU Hui. Spatial and Temporal Characteristics and Driving Factors of Urban Heat Island in Pinglu Canal Economic Belt, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 185-198.
[2] TAN Yingying, JIANG Yu, ZHOU Shaoqi. Spatio-temporal Evolution of Ecosystem Service Value in Tourist Cities: Taking Guilin City as an Example [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 133-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] TIAN Sheng, ZHAO Kailong, MIAO Jialin. Research on Automatic Driving Road Traffic Detection Algorithm Based on Improved YOLO11n Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 1 -9 .
[6] HUANG Yanguo, XIAO Jie, WU Shuiqing. Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 10 -22 .
[7] LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23 -32 .
[8] ZHANG Zhulu, LI Huaqiang, LIU Yang, XU Lixiong. Non-intrusive Load Identification Based on Bi-LSTM Feature Fusion and FT-FSL[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 33 -44 .
[9] WANG Tao, LI Yuansong, SHI Rui, CHEN Huining, HOU Xianqing. MGDE-UNet: Defect Segmentation Model for Lightweight Photovoltaic Cells[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 45 -55 .
[10] HUANG Wenjie, LUO Weiping, CHEN Zhennan, PENG Zhixiang, DING Zihao. Research on Lightweight PCB Defect Detection Algorithm Based on YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 56 -67 .