|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 162-173.doi: 10.16088/j.issn.1001-6600.2024121301
谢文彬1,2, 喻宇慧1,2, 禹海双1,2, 邬慧贤1,2, 金俊飞1,2, 陈振锋3, 卢幸1,2*
XIE Wenbin1,2, YU Yuhui1,2, YU Haishuang1,2, WU Huixian1,2, JIN Junfei1,2, CHEN Zhenfeng3, LU Xing1,2*
摘要: 本文对一种新型抗肿瘤化合物草酰胺衍生物Z21的活性和作用机制进行研究。活性筛选显示Z21能有效抑制多种肿瘤细胞株的生长,尤其对人肝癌细胞株Hep G2的抑制效应最为显著。将Hep G2细胞作为实验对象,通过显微镜观察细胞形态学、MTT法与ATP含量测定法检测细胞活力、EdU掺入法与克隆形成实验检测细胞增殖能力、PI染色检测细胞周期、Annexin V/PI染色法检测细胞凋亡、Western blot检测凋亡相关蛋白的表达。结果显示:Z21以剂量依赖性的方式抑制Hep G2细胞增殖,降低Bcl-2的表达,提高Bax的表达,并通过Caspase依赖性凋亡途径诱导细胞发生凋亡,而对细胞周期无明显阻滞作用。研究结果说明Z21具有良好的抗肿瘤活性,其作用机制与诱导细胞凋亡相关。
中图分类号: R735.7
| [1] 夏永祥, 张峰, 李相成, 等. 原发性肝癌10 966例外科治疗分析[J]. 中华外科杂志, 2021(1): 6-17. [2] 杨宁, 沈锋. 综合治疗时代肝癌外科手术治疗地位与时机变迁[J]. 中国实用外科杂志, 2024, 44(9): 1010-1015. DOI: 10.19538/j.cjps.issn1005-2208.2024.09.09. [3] 霍群, 刘杰, 陈莉, 等. 血清AFP临界值判断对肝癌诊断的影响[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 121-124. DOI: 10.16088/j.issn.1001-6600.2014.03.044. [4] YANG C, ZHANG H L, ZHANG L M, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma[J]. Nature Reviews Gastroenterology & Hepatology, 2023, 20(4): 203-222. DOI: 10.1038/s41575-022-00704-9. [5] WANG Y, DENG B C. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers[J]. Cancer Metastasis Reviews, 2023, 42(3): 629-652. DOI: 10.1007/s10555-023-10084-4. [6] 林万华, 赵林, 刘晓灿, 等. HDGF基因在肝癌和癌旁组织中表达情况的检测[J]. 广西师范大学学报(自然科学版), 2014, 32(1): 118-122. DOI: 10.16088/j.issn.1001-6600.2014.01.024. [7] 罗茜茜, 陈佳梅, 石薇, 等. 晚期原发性肝癌靶向及免疫治疗的研究进展[J]. 山东医药, 2023, 63(1): 92-96. [8] HUANG L Z, XU R, LI W R, et al. Repolarization of macrophages to improve sorafenib sensitivity for combination cancer therapy[J]. Acta Biomaterialia, 2023, 162: 98-109. DOI: 10.1016/j.actbio.2023.03.014. [9] ABOU-ALFA G K, MEYER T, CHENG A L, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma[J]. New England Journal of Medicine, 2018, 379(1): 54-63. DOI: 10.1056/NEJMoa1717002. [10] THOMAS M B, GARRETT-MAYER E, ANIS M, et al. A randomized phase Ⅱ open-label multi-institution study of the combination of bevacizumab and erlotinib compared to sorafenib in the first-line treatment of patients with advanced hepatocellular carcinoma[J]. Oncology, 2018, 94(6): 329-339. DOI: 10.1159/000485384. [11] SUGIMOTO R, SATOH T, UEDA A, et al. Atezolizumab plus bevacizumab treatment for unresectable hepatocellular carcinoma progressing after molecular targeted therapy: a multicenter prospective observational study[J]. Medicine, 2022, 101(40): e30871. DOI: 10.1097/MD.0000000000030871. [12] FINN R S, QIN S K, IKEDA M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma[J]. New England Journal of Medicine, 2020, 382(20): 1894-1905. DOI: 10.1056/NEJMoa1915745. [13] YAO C Y, WU S L, KONG J, et al. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies[J]. Cancer Biology & Medicine, 2023, 20(1): 25-43. DOI: 10.20892/j.issn.2095-3941.2022.0449. [14] TAHMASVAND R, DEHGHANI S, KOOSHAFAR Z, et al. In vitro and in vivo activity of a novel oxamide-hydrazone hybrid derivative against triple-negative breast cancer[J]. Naunyn-Schmiedeberg’s Archieves of Pharmacology, 2024, 397(7): 5119-5129. DOI: 10.1007/s00210-023-02931-6. [15] MOTATI D R, UREDI D, WATKINS E B. The discovery and development of oxalamide and pyrrole small molecule inhibitors of gp120 and HIV entry: a review[J]. Current Topics in Medicinal Chemistry, 2019, 19(18): 1650-1675. DOI: 10.2174/1568026619666190717163959. [16] FU H L, ZHENG K, ZHANG M J, et al. Synthesis and structure of new tetracopper (Ⅱ) complexes with N-benzoate-N′-[3-(diethylamino)propyl] oxamide as a bridging ligand: the influence of hydrophobicity on enhanced DNA/BSA-binding and anticancer activity[J]. Journal of Photochemistry and Photobiology B: Biology, 2016, 161: 80-90. DOI: 10.1016/j.jphotobiol.2016.04.032. [17] ZHENG K, LIU F, LI Y T, et al. Synthesis and structure elucidation of new μ-oxamido-bridged dicopper (Ⅱ) complexes showing in vitro anticancer activity: evaluation of DNA/protein-binding properties by experiment and molecular docking[J]. Journal of Inorganic Biochemistry, 2016, 156: 75-88. DOI: 10.1016/j.jinorgbio.2015.12.023. [18] WEINBERG E M, CURRY M P, FRENETTE C T, et al. Multicenter, double-blind, randomized trial of emricasan in hepatitis C-treated liver transplant recipients with residual fibrosis or cirrhosis[J]. Liver Transplantation, 2021, 27(4): 568-579. DOI: 10.1002/lt.25934. [19] FRENETTE C, KAYALI Z, MENA E, et al. Emricasan to prevent new decompensation in patients with NASH-related decompensated cirrhosis[J]. Journal of Hepatology, 2021, 74(2): 274-282. DOI: 10.1016/j.jhep.2020.09.029. [20] NASSAUER L, SCHOTT J W, HARRE J, et al. The caspase-inhibitor Emricasan efficiently counteracts cisplatin- and neomycin-induced cytotoxicity in cochlear cells[J]. Journal of Molecular Medicine, 2024, 102(9): 1163-1174. DOI: 10.1007/s00109-024-02472-2. [21] 霍红月, 李仲庆, 覃其品, 等. 邻香草醛缩胡椒乙胺席夫碱锌(Ⅱ)配合物的研究[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 65-73. DOI: 10.16088/j.issn.1001-6600.2014.03.036. [22] ATLĞŞEKEROĞLU Z, ŞEKEROĞLU V, IŞK S, et al. Trimetazidine alone or in combination with gemcitabine and/or abraxane decreased cell viability, migration and ATP levels and induced apoptosis of human pancreatic cells[J]. Clinics and Research in Hepatology and Gastroenterology, 2021, 45(6): 101632. DOI: 10.1016/j.clinre.2021.101632. [23] ANGELOZZI M, DE CHARLEROY C R, LEFEBVRE V. EdU-based assay of cell proliferation and stem cell quiescence in skeletal tissue sections[J]. Methods in Molecular Biology, 2021, 2230: 357-365. DOI: 10.1007/978-1-0716-1028-2_21. [24] KASHYAP A, UMAR S M, DEV J R A, et al. Combination of 3PO analog PFK15 and siPFKL efficiently suppresses the migration, colony formation ability, and PFK-1 activity of triple-negative breast cancers by reducing the glycolysis[J]. Journal of Cellular Biochemistry, 2023, 124(9): 1259-1272. DOI: 10.1002/jcb.30443. [25] JAMASBI E, HAMELIAN M, HOSSAIN M A, et al. The cell cycle, cancer development and therapy[J]. Molecular Biology Reports, 2022, 49(11): 10875-10883. DOI: 10.1007/s11033-022-07788-1. [26] NEWTON K, STRASSER A, KAYAGAKI N, et al. Cell death[J]. Cell, 2024, 187(2): 235-256. DOI: 10.1016/j.cell.2023.11.044. [27] SAHOO G, SAMAL D, KHANDAYATARAY P, et al. A review on caspases: key regulators of biological activities and apoptosis[J]. Molecular Neurobiology, 2023, 60(10): 5805-5837. DOI: 10.1007/s12035-023-03433-5. [28] LADD A D, DUARTE S, SAHIN I, et al. Mechanisms of drug resistance in HCC[J]. Hepatology, 2024, 79(4): 926-940. DOI: 10.1097/HEP.0000000000000237. [29] 刘慧, 李丽, 刘洋汉, 等. 肿瘤相关巨噬细胞靶向治疗研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 286-299. DOI: 10.16088/j.issn.1001-6600.2021122303. [30] 王强, 张治清. 有氧糖酵解在肝癌中的研究进展[J]. 局解手术学杂志, 2024, 33(11): 963-966. DOI: 10.11659/jjssx.08E023056. [31] GILLANI T B, RAWLING T, MURRAY M. Cytochrome P450-mediated biotransformation of sorafenib and its N-oxide metabolite: implications for cell viability and human toxicity[J]. Chemical Research in Toxicology, 2015, 28(1): 92-102. DOI: 10.1021/tx500373g. [32] ROY D, SHENG G Y, HERVE S, et al. Interplay between cancer cell cycle and metabolism: challenges, targets and therapeutic opportunities[J]. Biomedicine & Pharmacotherapy, 2017, 89: 288-296. DOI: 10.1016/j.biopha.2017.01.019. [33] LI Q Z, CHEN Y Y, LIU Q P, et al. Cucurbitacin B suppresses hepatocellular carcinoma progression through inducing DNA damage-dependent cell cycle arrest[J]. Phytomedicine, 2024, 126: 155177. DOI: 10.1016/j.phymed.2023.155177. [34] ABUSALIYA A, JEONG S H, BHOSALE P B, et al. Mechanistic action of cell cycle arrest and intrinsic apoptosis via inhibiting Akt/mTOR and activation of p38-MAPK signaling pathways in Hep3B liver cancer cells by prunetrin-a flavonoid with therapeutic potential[J]. Nutrients, 2023, 15(15): 3407. DOI: 10.3390/nu15153407. [35] GAO X, JIANG Y H, XU Q, et al. 4-hydroxyderricin promotes apoptosis and cell cycle arrest through regulating PI3K/AKT/mTOR pathway in hepatocellular cells[J]. Foods, 2021, 10(9): 2036. DOI: 10.3390/foods10092036. |
| [1] | 苏源丰, 李良波, 陈建桦, 张进燕, 卢羽玲, 蒙青爱, 何美英, 廖广凤, 卢汝梅. 桂郁金化学成分及其生物活性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 152-161. |
| [2] | 谢文彬, 金俊飞, 陈振锋, 卢幸. 光激活前药的抗肿瘤研究进展[J]. 广西师范大学学报(自然科学版), 2025, 43(5): 16-40. |
| [3] | 吴黎川, 谈振凯, 覃业浩, 赵续棋, 谢雨心, 黄丽羽, 韦金锐. 槐定碱衍生物抑制肝癌细胞迁移与侵袭研究[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 207-220. |
| [4] | 覃业浩, 郭晨静, 吴黎川, 魏鹏程. 基于UPLC-QTOF-MS、网络药理学和实验验证探讨复方鹿仙草颗粒抗肝癌作用机制[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 221-237. |
| [5] | 郑婉华, 莫斯萍, 周祖平, 蒲仕明. Nr4a3对乳腺癌细胞增殖、凋亡及侵袭的影响[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 189-197. |
| [6] | 杜丽波, 李金玉, 张晓, 李永红, 潘卫东. 毛红椿皮的化学成分及生物活性研究[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 162-172. |
| [7] | 李银玲, 周晶, 陈莹, 陈俏媛, 林万华. Sdr9c7基因在荷瘤小鼠红细胞中异常表达的研究[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 147-153. |
| [8] | 刘晶晶, 陈转欣, 尤佳航, 黄家艳, 程克光. 齐墩果酸-对羟基苯甲腈及其类似物的合成与抗肿瘤活性评价[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 132-138. |
| [9] | 孙立, 初相伍, 刘春梅, 张琚政, 程克光. 熊果酸/甘草次酸-尿嘧啶核苷缀合物的合成与抗肿瘤活性评价[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 87-92. |
| [10] | 刘茜. 南方红豆杉提取物的抗氧化、抗肿瘤活性研究[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 55-59. |
| [11] | 吴亦明, 李亮萍, 曾淑兰, 李晓红, 周祖平, 彭艳. 1,8-萘二甲酰亚胺衍生物NA-17对肝癌细胞株HepG2的体外抗肿瘤作用研究[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 102-108. |
| [12] | 黄婉云, 殷鹏龙, 李虹, 彭湘艳, 苏桂发. 喹诺酮-二茂铁杂合物的合成及生物活性研究[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 111-115. |
| [13] | 霍红月, 李仲庆, 覃其品, 刘延成, 陈振锋. 邻香草醛缩胡椒乙胺席夫碱锌(Ⅱ)配合物的研究[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 65-73. |
| [14] | 霍群, 刘杰, 陈莉, 廖维甲. 血清AFP临界值判断对肝癌诊断的影响[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 121-124. |
| [15] | 韩留玉, 戴支凯, 杨政敏, 黄俊, 覃江克, 苏桂发. 呫吨酮并吡啶衍生物XP-16对人鼻咽癌CNE细胞的体外抑制作用[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 95-100. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |