2025年04月05日 星期六

广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (2): 207-220.doi: 10.16088/j.issn.1001-6600.2024061801

• 药用资源研究 • 上一篇    下一篇

槐定碱衍生物抑制肝癌细胞迁移与侵袭研究

吴黎川1,2, 谈振凯1,2, 覃业浩1,2, 赵续棋1,2, 谢雨心1,2, 黄丽羽1,2, 韦金锐3*   

  1. 1.广西大学 医学院, 广西 南宁 530004;
    2.广西特色生物医药重点实验室(广西大学), 广西 南宁 530004;
    3.广西中医药大学 中医药壮瑶医药研究院, 广西 南宁 530200
  • 收稿日期:2024-06-18 修回日期:2024-07-11 出版日期:2025-03-05 发布日期:2025-04-02
  • 通讯作者: 韦金锐(1987—), 女, 广西南宁人, 广西中医药大学助理研究员, 博士。E-mail: weijr@gxtcmu.edu.cn
  • 基金资助:
    国家自然科学基金(82260715); 广西中青年教师基础能力提升项目(2024KY0302); 广西研究生教育创新计划资助项目(YCSW2024026)

Sophoridine Derivative Against Liver Cancer Cell Migration and Invasion

WU Lichuan1,2, TAN Zhenkai1,2, QIN Yehao1,2, ZHAO Xuqi1,2, XIE Yuxin1,2, HUANG Liyu1,2, WEI Jinrui3*   

  1. 1. School of Medicine, Guangxi University, Nanning Guangxi 530004, China;
    2. Guangxi Key Laboratory of Special Biomedicine (Guangxi University), Nanning Guangxi 530004, China;
    3. Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning Guangxi 530200, China
  • Received:2024-06-18 Revised:2024-07-11 Online:2025-03-05 Published:2025-04-02

摘要: 本文综合运用网络药理学、生物信息学、分子对接、分子动力学、转录组学及体外实验探究一种含酯基吲哚类槐定碱衍生物对肝癌细胞迁移与侵袭的作用及机制。通过PharmMapper、Super-PRED、Swisstarget及Targetnet数据库查找衍生物潜在靶点,利用差异表达分析确定肝癌转移相关基因,取交集确定衍生物作用的肝癌转移相关基因,通过GO/KEGG分析,预测衍生物潜在作用信号通路和差异基因富集信号通路,利用蛋白互作分析和分子对接及分子动力学模拟确定核心靶点和衍生物与核心靶点的相互作用,利用转录组测序获取衍生物导致的差异表达基因,通过蛋白免疫印迹实验检测相应蛋白的表达。结果表明:衍生物可显著抑制肝癌细胞的迁移和侵袭,共有衍生物潜在作用肝癌转移相关靶点47个,其中核心靶点5个:STAT3、PPARG、MAP2K1、CDK4、AKT3;MAPK通路在衍生物预测基因及衍生物导致的差异表达基因富集分析中显著富集,衍生物与核心靶点MAP2K1(MAPK通路关键节点)具备较高结合亲和度,MAPK通路中的核心成员p-Erk1/2蛋白表达下调。这些都表明含酯基吲哚类槐定碱衍生物通过降低MAPK/ERK通路活性抑制肝癌细胞迁移与侵袭。

关键词: 肝癌, 细胞迁移与侵袭, 槐定碱衍生物6j, 网络药理学, 分子对接, 分子动力学模拟, MAPK通路

Abstract: This study comprehensively applies network pharmacology, bioinformatics, molecular docking, molecular dynamics, transcriptomics, and in vitro experiments to explore the effects and mechanisms of an indole sophoridine derivative containing ester group on the migration and invasion of liver cancer cells. The potential targets of this derivative were retrieved by using PharmMapper, Super-PRED, Swisstarget, and Targetnet databases. Liver cancer metastasis related genes were determined through differential expression analysis. The anti-liver cancer metastasis targets of this derivative were identified by taking intersection between predicted targets of this derivative and liver cancer metastasis related genes. GO/KEGG enrichment analysis was conducted to predict the potential signaling pathways of this derivative. Core targets of this derivative were identified via using protein-protein interaction analysis. Subsequently, molecular docking and molecular dynamics were involved to reveal the potential interaction between this derivative could core target. Furthermore, transcriptome sequencing was performed to obtain differentially expressed genes caused by this derivative. Finally, western blot assays were conducted to validate the effects of this derivative on MAPK pathway. The results showed that this derivative could significantly inhibit the migration and invasion of liver cancer cells. A total of 47 potential liver cancer metastasis related targets were predicted for this derivative, including 5 core targets: STAT3, PPARG, MAP2K1, CDK4, AKT3. The MAPK pathway was significantly enriched in the analysis of predicted genes and differentially expressed genes caused by this derivative. Molecular docking and molecular dynamics simulations also showed that this derivative had a high binding affinity with the core target MAP2K1 (a key node of the MAPK pathway). The results of western blot showed that under this derivative treatment, the core member of the MAPK pathway, p-Erk1/2 protein expression, was downregulated. Conclusion: this indole sophorodine derivative inhibits the migration and invasion of liver cancer cells by reducing the activity of the MAPK/ERK pathway.

Key words: liver cancer, cells migration and invasion, sophoridine derivative 6j, network pharmacology, molecular docking, molecular dynamics, MAPK pathway

中图分类号:  R285

[1] BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: a Cancer Journal for Clinicians, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2] ANWANWAN D, SINGH S K, SINGH S, et al. Challenges in liver cancer and possible treatment approaches[J]. Biochimica et Biophysica Acta(BBA):Reviews on Cancer, 2020, 1873(1): 188314. DOI: 10.1016/j.bbcan.2019.188314.
[3] CHEN S Z, CAO Q Q, WEN W, et al. Targeted therapy for hepatocellular carcinoma: Challenges and opportunities[J]. Cancer Letters, 2019, 460: 1-9. DOI: 10.1016/j.canlet.2019.114428.
[4] 张明发,沈雅琴.槐定碱的抗肿瘤药理作用研究进展[J].药物评价研究,2021,44(2):452-460.DOI: 10.7501/j.issn.1674-6376.2021.02.031.
[5] 范秋雨,武建文,李春晓,等.苦豆子抗炎机制的网络药理学分析及试验验证[J].中国畜牧兽医,2023,50(7): 2951-2965.DOI: 10.16431/j.cnki.1671-7236.2023.07.035.
[6] 唐琼,刘鳐,王宝君,等.槐定碱抗病毒作用的研究进展[J].中国药理学通报,2023,39(6):1030-1035.DOI: 10.12360/CPB202202014.
[7] ZHAO Z W, ZHANG D K, WU F Z, et al. Sophoridine suppresses lenvatinib-resistant hepatocellular carcinoma growth by inhibiting RAS/MEK/ERK axis via decreasing VEGFR2 expression[J]. Journal of Cellular and Molecular Medicine, 2021, 25(1): 549-560. DOI: 10.1111/jcmm.16108.
[8] ZHUANG H W, DAI X D, ZHANG X Y, et al. Sophoridine suppresses macrophage-mediated immunosuppression through TLR4/IRF3 pathway and subsequently upregulates CD8+ T cytotoxic function against gastric cancer[J]. Biomedicine & Pharmacotherapy, 2020, 121: 109636. DOI: 10.1016/j.biopha.2019.109636.
[9] WANG Q, LI Y, LI K W, et al. Sophoridine: a review of its pharmacology, pharmacokinetics and toxicity[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2022, 95: 153756. DOI: 10.1016/j.phymed.2021.153756.
[10] UR RASHID H, RASOOL S, ALI Y, et al. Anti-cancer potential of sophoridine and its derivatives: recent progress and future perspectives[J]. Bioorganic Chemistry, 2020, 99: 103863. DOI: 10.1016/j.bioorg.2020.103863.
[11] TIAN K P, WEI J R, WANG R, et al. Sophoridine derivative 6j inhibits liver cancer cell proliferation via ATF3 mediated ferroptosis[J]. Cell Death Discovery, 2023, 9(1): 296. DOI: 10.1038/s41420-023-01597-6.
[12] HOPKINS A L. Network pharmacology[J]. Nature Biotechnology, 2007, 25(10): 1110-1111. DOI: 10.1038/nbt1007-1110.
[13] 张代峰,胡晨骏,胡孔法.网络药理学在中药领域的应用和展望[J].医学信息学杂志,2024,45(6):30-36,56.DOI: 10.3969/j.issn.1673-6036.2024.06.006.
[14] 吴慧婕,黄晓梅,梁芬兰,等.黄杜鹃根化学成分及镇痛网络药理学研究[J].广西师范大学学报(自然科学版),2024,42(1):147-155.DOI: 10.16088/j.issn.1001-6600.2023062003.
[15] WANG X, SHEN Y H, WANG S W, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database[J]. Nucleic Acids Research, 2017, 45(W1): W356-W360. DOI: 10.1093/nar/gkx374.
[16] GALLO K, GOEDE A, PREISSNER R, et al. SuperPred 3.0: drug classification and target prediction-a machine learning approach[J]. Nucleic Acids Research, 2022, 50(W1): W726-W731. DOI: 10.1093/nar/gkac297.
[17] DAINA A, MICHIELIN O, ZOETE V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Research, 2019, 47(W1): W357-W364. DOI: 10.1093/nar/gkz382.
[18] YAO Z J, DONG J, CHE Y J, et al. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models[J]. Journal of Computer-aided Molecular Design, 2016, 30(5): 413-424. DOI: 10.1007/s10822-016-9915-2.
[19] CLOUGH E, BARRETT T. The gene expression omnibus database[J]. Methods in Molecular Biology, 2016, 1418: 93-110. DOI: 10.1007/978-1-4939-3578-9_5.
[20] DONCHEVA N T, MORRIS J H, GORODKIN J, et al. Cytoscape StringApp: network analysis and visualization of proteomics data[J]. Journal of Proteome Research, 2019, 18(2): 623-632. DOI: 10.1021/acs.jproteome.8b00702.
[21] SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Research, 2019, 47(D1): D607-D613. DOI: 10.1093/nar/gky1131.
[22] SHERMAN B T, HAO M, QIU J, et al. David: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Research, 2022, 50(W1): W216-W221. DOI: 10.1093/nar/gkac194.
[23] BURLEY S K, BHIKADIYA C, BI C X, et al. RCSB protein data bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning[J]. Nucleic Acids Research, 2023, 51(D1): D488-D508. DOI: 10.1093/nar/gkac1077.
[24] 郑荣寿,张思维,孙可欣,等.2016年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志,2023,45(3):212-220.DOI: 10.3760/cma.j.cn112152-20220922-00647.
[25] 宗静静,卿鑫,樊哲,等.原发性肝癌治疗进展[J].东南大学学报(医学版),2021,40(4):542-547.DOI: 10.3969/j.issn.1671-6264.2021.04.021.
[26] CHENG A L, KANG Y K, CHEN Z D, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial[J]. The Lancet Oncology, 2009, 10(1): 25-34. DOI: 10.1016/S1470-2045(08)70285-7.
[27] LLOVET J M, RICCI S, MAZZAFERRO V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. The New England Journal of Medicine, 2008, 359(4): 378-390. DOI: 10.1056/NEJMoa0708857.
[28] XU Y M, WU L C, RASHID H U, et al. Novel indolo-sophoridinic scaffold as Topo I inhibitors: design, synthesis and biological evaluation as anticancer agents[J]. European Journal of Medicinal Chemistry, 2018, 156: 479-492. DOI: 10.1016/j.ejmech.2018.07.028.
[29] 于春,高芬,郑兰兰,等.肝癌相关信号通路的中药调控研究进展[J].中国实验方剂学杂志,2024,30(15):232-243.DOI: 10.13422/j.cnki.syfjx.20240128.
[30] ZUO Q Z, HE J, ZHANG S, et al. PPARγ coactivator-1α suppresses metastasis of hepatocellular carcinoma by inhibiting warburg effect by PPARγ-dependent WNT/β-catenin/pyruvate dehydrogenase kinase isozyme 1 axis[J]. Hepatology, 2021, 73(2): 644-660. DOI: 10.1002/hep.31280.
[31] MOON H, RO S W. MAPK/ERK signaling pathway in hepatocellular carcinoma[J]. Cancers, 2021, 13(12): 3026. DOI: 10.3390/cancers13123026.
[32] GOEL S, BERGHOLZ J S, ZHAO J J. Targeting CDK4 and CDK6 in cancer[J]. Nature Reviews. Cancer, 2022, 22(6): 356-372. DOI: 10.1038/s41568-022-00456-3.
[33] ZHANG Z, LI J J, OU Y, et al. CDK4/6 inhibition blocks cancer metastasis through a USP51-ZEB1-dependent deubiquitination mechanism[J]. Signal Transduction and Targeted Therapy, 2020, 5(1): 25. DOI: 10.1038/s41392-020-0118-x.
[34] REVATHIDEVI S, MUNIRAJAN A K. Akt in cancer: mediator and more[J]. Seminars in Cancer Biology, 2019, 59: 80-91. DOI: 10.1016/j.semcancer.2019.06.002.
[35] GUO Y J, PAN W W, LIU S B, et al. ERK/MAPK signalling pathway and tumorigenesis[J]. Experimental and Therapeutic Medicine, 2020, 19(3): 1997-2007. DOI: 10.3892/etm.2020.8454.
[36] YAO C, KONG F Z, ZHANG S L, et al. Long non-coding RNA BANCR promotes proliferation and migration in oral squamous cell carcinoma via MAPK signaling pathway[J]. Journal of Oral Pathology & Medicine, 2021, 50(3): 308-315. DOI: 10.1111/jop.12968.
[37] BATOOL S, ASIM L, RAFFAQ QURESHI F, et al. Molecular targets of plant-based alkaloids and polyphenolics in liver and breast cancer: an insight into anticancer drug development[J]. Anti-cancer Agents in Medicinal Chemistry, 2025, 25(5): 295-312. DOI: 10.2174/01187152063022 16240628072554.
[38] NIU F L, YU Y, LI Z Z, et al. Arginase: an emerging and promising therapeutic target for cancer treatment[J]. Biomedicine & Pharmacotherapy, 2022, 149: 112840. DOI: 10.1016/j.biopha.2022.112840.
[39] KANG J Y, CHO H, GIL M, et al. The novel prognostic marker SPOCK2 regulates tumour progression in melanoma[J]. Experimental Dermatology, 2024, 33(6): e15092. DOI: 10.1111/exd.15092.
[40] 程婷婷,王成,潘效红.丝裂原蛋白活化激酶信号通路与癌症相关研究进展[J].滨州医学院学报,2021,44(4):302-305.DOI: 10.19739/j.cnki.issn1001-9510.2021.04.016.
[41] HOU C H, CHEN W L, LIN C Y. Targeting nerve growth factor-mediated osteosarcoma metastasis: mechanistic insights and therapeutic opportunities using larotrectinib[J]. Cell Death & Disease, 2024, 15(5): 381. DOI: 10.1038/s41419-024-06752-0.
[1] 覃业浩, 郭晨静, 吴黎川, 魏鹏程. 基于UPLC-QTOF-MS、网络药理学和实验验证探讨复方鹿仙草颗粒抗肝癌作用机制[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 221-237.
[2] 张兵, 唐鑫, 陈聪, 宁嘉怡, 周异欢, 年四昀, 余启明, 谭相端. 强肝胶囊治疗非酒精性脂肪性肝病网络药理学研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 206-218.
[3] 吴慧婕, 黄晓梅, 梁芬兰, 黄欣, 雷梦颖, 周艳林, 刘雪梅, 王刚. 黄杜鹃根化学成分及镇痛网络药理学研究[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 147-155.
[4] 梁林盼, 凌雪, 方姣, 苏志恒, 郑华. 基于网络药理学和分子对接探讨瑶山甜茶治疗2型糖尿病的作用机制[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 143-154.
[5] 李银玲, 周晶, 陈莹, 陈俏媛, 林万华. Sdr9c7基因在荷瘤小鼠红细胞中异常表达的研究[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 147-153.
[6] 蒋向辉, 谭荣, 杨永平, 肖清淙. 十大功劳甘草汤治疗肝炎的网络药理学研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 198-209.
[7] 霍群, 刘杰, 陈莉, 廖维甲. 血清AFP临界值判断对肝癌诊断的影响[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 121-124.
Viewed
Full text
0
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 0


Abstract
4
Just accepted Online first Issue
0 0 4
  From Others local
  Times 3 1
  Rate 75% 25%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发