|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (4): 165-174.doi: 10.16088/j.issn.1001-6600.2024090801
聂钦坪, 王子瑞, 候晓敏, 吴青峰*
NIE Qinping, WANG Zirui, HOU Xiaomin, WU Qingfeng*
摘要: 悬浮颗粒物是自然水体的重要组分,能对水体中污染物的光化学行为产生重要影响。本文以蒙脱石-腐殖酸复合颗粒模拟水体悬浮颗粒物,研究其对四环素(TC)光解行为的影响。结果显示,水体中蒙脱石-腐殖酸颗粒物的存在显著加速四环素的光解,其光解动力学符合准一级动力学模型。电子自旋共振波谱分析和自由基淬灭实验表明,蒙脱石-腐殖酸复合颗粒物中的光活性成分(蒙脱石、腐殖酸)在光照条件下诱导活性氧自由基的产生,自由基与四环素之间的进一步反应加速其光解。蒙脱石和蒙脱石-腐殖酸复合颗粒体系中的光解对比实验以及吸附实验进一步表明,复合颗粒物对四环素光解的促进作用还与界面吸附密切相关。四环素分子与蒙脱石表面吸附点位之间的界面作用有利于光能量的吸收和电子转移,进而加速光解。复合颗粒物对四环素光解的促进作用是这2种机制共同作用的结果。光解产物分析表明,在复合颗粒物存在条件下,苯环上的羟基加成、脱甲基和脱水是四环素分子降解的主要反应途径。本研究为全面理解真实水体环境中抗生素污染物的光化学行为提供有价值的参考。
中图分类号: TQ424;X52
| [1] WILKINSON J L, BOXALL A B A, KOLPIN D W, et al. Pharmaceutical pollution of the world's rivers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(8): e2113947119. DOI: 10.1073/pnas.2113947119. [2] BAVUMIRAGIRA J P, GE J N, YIN H L. Fate and transport of pharmaceuticals in water systems: a processes review[J]. Science of the Total Environment, 2022, 823: 153635. DOI: 10.1016/j.scitotenv.2022.153635. [3] ROUT P R, ZHANG T C, BHUNIA P, et al. Treatment technologies for emerging contaminants in wastewater treatment plants: a review[J]. Science of the Total Environment, 2021, 753: 141990. DOI: 10.1016/j.scitotenv.2020.141990. [4] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015,49(11): 6772-6782. DOI: 10.1021/acs.est.5b00729. [5] HEBERER T. Tracking persistent pharmaceutical residues from municipal sewage to drinking water[J]. Journal of Hydrology, 2002, 266(3/4): 175-189. DOI: 10.1016/S0022-1694(02)00165-8. [6] WEI R C, GE F, HUANG S Y, et al. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China[J]. Chemosphere, 2011, 82(10): 1408-1414. DOI: 10.1016/j.chemosphere.2010.11.067. [7] SUN J T, ZENG Q T, TSANG D C W, et al. Antibiotics in the agricultural soils from the Yangtze River Delta, China[J]. Chemosphere, 2017, 189: 301-308. DOI: 10.1016/j.chemosphere.2017.09.040. [8] SHI H, YANG Y, LIU M, et al. Occurrence and distribution of antibiotics in the surface sediments of the Yangtze Estuary and nearby coastal areas[J]. Marine Pollution Bulletin, 2014, 83(1): 317-323. DOI: 10.1016/j.marpolbul.2014.04.034. [9] WANG X H, LIN A Y C. Is the phototransformation of pharmaceuticals a natural purification process that decreases ecological and human health risks?[J]. Environmental Pollution, 2014, 186: 203-215. DOI: 10.1016/j.envpol.2013.12.007. [10] BHAT A P, POMERANTZ W C K, ARNOLD W A. Wavelength-dependent UV-LED photolysis of fluorinated pesticides and pharmaceuticals[J]. Environmental Science & Technology, 2023, 57(13): 5327-5336. DOI: 10.1021/acs.est.3c00627. [11] CHOWDHURY P, SARATHY S R, DAS S, et al. Direct UV photolysis of pharmaceutical compounds: determination of pH-dependent quantum yield and full-scale performance[J]. Chemical Engineering Journal, 2020, 380: 122460. DOI: 10.1016/j.cej.2019.122460. [12] SCISCENKO I, ARQUES A, VARGA Z, et al. Significant role of iron on the fate and photodegradation of enrofloxacin[J]. Chemosphere, 2021, 270: 129791. DOI: 10.1016/j.chemosphere.2021.129791. [13] BAI Y, ZHOU Y L, CHE X W, et al. Indirect photodegradation of sulfadiazine in the presence of DOM: effects of DOM components and main seawater constituents[J]. Environmental Pollution, 2021, 268, Part B: 115689. DOI: 10.1016/j.envpol.2020.115689. [14] WEI L X, LI H X, LU J F. Algae-induced photodegradation of antibiotics: a review[J]. Environmental Pollution, 2021, 272: 115589. DOI: 10.1016/j.envpol.2020.115589. [15] 黄宏,李圆杏,杨红伟.水环境中抗生素的光降解研究进展[J].环境化学,2013,32(7):1335-1341. DOI: 10.7524/j.issn.0254-6108.2013.07.029. [16] WALCH H, VON DER KAMMER F, HOFMANN T. Freshwater suspended particulate matter-key components and processes in floc formation and dynamics[J]. Water Research, 2022, 220: 118655. DOI: 10.1016/j.watres.2022.118655. [17] 胡学香,陈勇,聂玉伦,等.水中四环素类化合物在不同光源下的光降解[J].环境工程学报,2012,6(8):2465-2469. [18] NIU J F, LI Y, WANG W L. Light-source-dependent role of nitrate and humic acid in tetracycline photolysis: kinetics and mechanism[J]. Chemosphere, 2013, 92(11): 1423-1429. DOI: 10.1016/j.chemosphere.2013.03.049. [19] GOURNIS D, KARAKASSIDES M A, PETRIDIS D. Formation of hydroxyl radicals catalyzed by clay surfaces[J]. Physics and Chemistry of Minerals, 2002, 29(2): 155-158. DOI: 10.1007/s002690100215. [20] 孙昊婉,张立秋,封莉.光诱导腐殖酸产生自由基对天然水中雌二醇光降解效能的影响[J].环境工程学报,2017,11(11):5794-5798. DOI: 10.12030/j.cjee.201702118. [21] WANG M J, SHI H H, SHAO S, et al. Montmorillonite promoted photodegradation of amlodipine in natural water via formation of surface complexes[J]. Chemosphere, 2022, 286(1): 131641. DOI: 10.1016/j.chemosphere.2021.131641. [22] XU L P, LI H, MITCH W A, et al. Enhanced phototransformation of tetracycline at smectite clay surfaces under simulated sunlight via a Lewis-base catalyzed alkalization mechanism[J]. Environmental Science & Technology, 2019, 53(2): 710-718. DOI: 10.1021/acs.est.8b06068. [23] LI S, HU J Y. Photolytic and photocatalytic degradation of tetracycline: effect of humic acid on degradation kinetics and mechanisms[J]. Journal of Hazardous Materials, 2016, 318: 134-144. DOI: 10.1016/j.jhazmat.2016.05.100. [24] ZHU X D, WANG Y J, SUN R J, et al. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2[J]. Chemosphere, 2013, 92(8): 925-932. DOI: 10.1016/j.chemosphere.2013.02.066. [25] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. DOI: 10.1063/1.555805. [26] JIAO S J, ZHENG S R, YIN D Q, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria[J]. Chemosphere, 2008, 73(3): 377-382. DOI: 10.1016/j.chemosphere.2008.05.042. |
| [1] | 严海涵, 张文雄. 自由基稀土配合物:研究现状、挑战与展望[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 168-182. |
| [2] | 杨政敏,张艳军,王升匀,胡先运,李俊. 银杏果壳多糖多酚提取及清除自由基活性研究[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 105-110. |
| [3] | 聂英涛, 彭峰林, 李少杰, 王紫微, 欧婵. 龙眼多糖通过下调氧自由基水平的抗疲劳作用研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 157-161. |
| [4] | 邹碧群. 吴茱萸、桑葚、柚子和香蕉抗氧化活性研究[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 50-54. |
| [5] | 李楠, 邓智年, 奉灵波, 周瑞芳, 魏源文, 曹辉庆, 李杨瑞. 甘蔗糖蜜酒精废液产腐殖酸的菌株筛选与鉴定[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 87-92. |
| [6] | 朱圣军, 李俊, 蒙爱萍, 刘庆业, 黄翠萍. 鹊肾树叶提取物抗氧化活性研究[J]. 广西师范大学学报(自然科学版), 2010, 28(3): 33-36. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |