广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (4): 175-187.doi: 10.16088/j.issn.1001-6600.2024091801

• 生态环境科学研究 • 上一篇    下一篇

调控分子筛B酸和L酸比例用于催化糠醛高值转化

彭子芮1#, 姬为龙2#, 徐波3, 宗艳龙2, 乔学义3*, 芦天亮2, 王剑峰1*   

  1. 1.郑州大学 生态与环境学院, 河南 郑州 450001;
    2.郑州大学 化工学院, 河南 郑州 450001;
    3.中国烟草总公司郑州烟草研究院, 河南 郑州 450001
  • 收稿日期:2024-09-18 修回日期:2024-11-07 出版日期:2025-07-05 发布日期:2025-07-14
  • 通讯作者: 乔学义(1981—),男,陕西临汾人,中国烟草总公司郑州烟草研究院副研究员。E-mail:qiaoxueyiztri@126.com
    王剑峰(1972—),女,河南淇县人,郑州大学副教授,博士。E-mail:1514903022@qq.com
  • 基金资助:
    国家自然科学基金(22178326)

Regulating the Ratio of B Acid and L Acid in Zeolites for High-Value Conversion of Furfural

PENG Zirui1#, JI Weilong2#, XU Bo3, ZONG Yanlong2, QIAO Xueyi3*, LU Tianliang2, WANG Jianfeng1*   

  1. 1. School of Ecology and Environment, Zhengzhou University, Zhengzhou Henan 450001, China;
    2. School of Chemical Engineering, Zhengzhou University, Zhengzhou Henan 450001, China;
    3. Zhengzhou Tobacco Research Institute, Zhengzhou Henan 450001, China
  • Received:2024-09-18 Revised:2024-11-07 Online:2025-07-05 Published:2025-07-14

摘要: γ-戊内酯和乙酰丙酸酯作为重要的生物质平台分子,在化学品、液体燃料和聚合物的生产中具有广阔应用前景。本文制备一种酸性可调控的P-Zr/H-Beta双功能催化剂,用于糠醛选择性转化制备γ-戊内酯和乙酰丙酸酯。该催化剂在异丙醇作为氢供体的条件下,可有效催化糠醛通过转移加氢、开环和环化反应等合成γ-戊内酯和乙酰丙酸酯。在150 ℃,γ-戊内酯和乙酰丙酸酯的收率分别为41.6%和23.7%,总收率为65.3%。糠醛转移加氢的活性取决于催化剂的酸碱性质,这与P-Zr/H-Beta中的P与Zr的物质的量之比密切相关。此外,本文还探讨时间、温度等反应参数对γ-戊内酯和乙酰丙酸酯收率的影响,并进一步对P-Zr/H-Beta的结构进行详细表征。

关键词: 糠醛, γ-戊内酯, 乙酰丙酸酯, 转移加氢, Beta分子筛

Abstract: As important biomass platform molecules, isopropyl levulinate and γ-valerolactone have promising applications in the production of chemicals, liquid fuels and polymerization. The acidity-tunable P-Zr/H-Beta bifunctional catalyst for the selective conversion of furfural to γ-valerolactone and isopropyl levulinate were prepared. The catalyst could effectively catalytic production of γ-valerolactone and isopropyl levulinate from furfural via transfer hydrogenation, ring opening and cyclization reactions with isopropanol as the hydrogen donor. The yields of γ-valerolactone and isopropyl levulinate were 41.6% and 23.7%, respectively, with a total yield of 65.3% at 150 ℃. The reaction activity of transfer hydrogenation mainly depended on the acid-base sites of catalyst, which was determined by the molar ratio of P to Zr in P-Zr/H-Beta. In addition, the effects of reaction parameters such as time and temperature on the yield of γ-valerolactone were explored; and the structure of P-Zr/H-Beta was further characterized in detail.

Key words: furfural, γ-valerolactone, isopropyl levulinate, transfer hydrogenation, Beta zeolite

中图分类号:  O621;X703;TQ426

[1] 左钧元,李欣彤,曾子涵,等.金属有机骨架基催化剂在糠醛选择性加氢反应中的应用研究进展[J].广西师范大学学报(自然科学版),2024,42(5):28-38. DOI: 10.16088/j.issn.1001-6600.2024040202.
[2] 尹理亚,丁开,杜文泽,等.金属/非金属和氮共掺杂生物炭的制备及其在有机污水处理中的应用进展[J].广西师范大学学报(自然科学版),2024,42(1):9-17. DOI: 10.16088/j.issn.1001-6600.2023032702.
[3] FELLAY C, DYSON P J, LAURENCZY G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst[J]. Angewandte Chemie International Edition, 2008,47(21): 3966-3968. DOI: 10.1002/anie.200800320.
[4] FÁBOS V, MIKA L T, HORVÁTH I T. Selective conversion of levulinic and formic acids to γ-valerolactone with the Shvo catalyst[J]. Organometallics, 2014, 33(1): 181-187. DOI: 10.1021/om400938h.
[5] ZHANG J, WU S B, LI B, et al. Advances in the catalytic production of valuable levulinic acid derivatives[J]. ChemCatChem, 2012,4(9): 1230-1237. DOI: 10.1002/cctc.201200113.
[6] PILEIDIS F D, TITIRICI M M. Levulinic acid biorefineries: new challenges for efficient utilization of biomass[J]. ChemSusChem, 2016, 9(6): 562-582. DOI: 10.1002/cssc.201501405.
[7] LEAL SILVA J F, GREKIN R, MARIANO A P, et al. Making levulinic acid and ethyl levulinate economically viable: a worldwide technoeconomic and environmental assessment of possible routes[J]. Energy Technology, 2018, 6(4): 613-639. DOI: 10.1002/ente.201700594.
[8] CHRISTENSEN E, WILLIAMS A, PAUL S, et al. Properties and performance of levulinate esters as diesel blend components[J]. Energy & Fuels, 2011, 25(11): 5422-5428. DOI: 10.1021/ef201229j.
[9] SHRIVASTAV G, KHAN T S, AGARWAL M, et al. Reformulation of gasoline to replace aromatics by biomass-derived alkyl levulinates[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7118-7127. DOI: 10.1021/acssuschemeng.7b01316.
[10] BUI L, LUO H, GUNTHER W R, et al. Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural[J]. Angewandte Chemie International Edition, 2013, 52(31): 8022-8025. DOI: 10.1002/anie.201302575.
[11] ZHANG T W, LU Y J, LI W Z, et al. One-pot production of γ-valerolactone from furfural using Zr-graphitic carbon nitride/H-β composite[J]. International Journal of Hydrogen Energy, 2019,44(29): 14527-14535. DOI: 10.1016/j.ijhydene.2019.04.059.
[12] WEINGARTEN R, KIM Y T, TOMPSETT G A, et al. Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts[J]. Journal of Catalysis, 2013, 304: 123-134. DOI: 10.1016/j.jcat.2013.03.023.
[13] SONG S, DI L, WU G J, et al. Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization[J]. Applied Catalysis B: Environmental, 2017, 205: 393-403. DOI: 10.1016/j.apcatb.2016.12.056.
[14] ANTUNES M M, LIMA S, NEVES P, et al. One-pot conversion of furfural to useful bio-products in the presence of a Sn, Al-containing zeolite beta catalyst prepared via post-synthesis routes[J]. Journal of Catalysis, 2015, 329: 522-537. DOI: 10.1016/j.jcat.2015.05.022.
[15] WINOTO H P, AHN B S, JAE J. Production of γ-valerolactone from furfural by a single-step process using Sn-Al-beta zeolites: optimizing the catalyst acid properties and process conditions[J]. Journal of Industrial and Engineering Chemistry, 2016,40: 62-71. DOI: 10.1016/j.jiec.2016.06.007.
[16] SCHWARTZ T J, GOODMAN S M, OSMUNDSEN C M, et al. Integration of chemical and biological catalysis: production of furylglycolic acid from glucose via cortalcerone[J]. ACS Catalysis, 2013, 3(12): 2689-2693. DOI: 10.1021/cs400593p.
[17] LI L, DING J H, JIANG J G, et al. One-pot synthesis of 5-hydroxymethylfurfural from glucose using bifunctional[Sn, Al] -beta catalysts[J]. Chinese Journal of Catalysis, 2015, 36(6): 820-828. DOI: 10.1016/S1872-2067(14)60287-4.
[18] DIJKMANS J, DUSSELIER M, GABRIËLS D, et al. Cooperative catalysis for multistep biomass conversion with Sn/Al beta zeolite[J]. ACS Catalysis, 2015, 5(2): 928-940. DOI: 10.1021/cs501388e.
[19] 夏国鹏,李相呈,梁俊,等.Zr-SCM-1分子筛一锅法高效催化糠醛制备γ-戊内酯[J].化学反应工程与工艺,2020,36(2):155-161,169. DOI: 10.11730/j.issn.1001-7631.2020.02.0155.07.
[20] SRINIVASA RAO B, KRISHNA KUMARI P, KOLEY P, et al. One pot selective conversion of furfural to γ-valerolactone over zirconia containing heteropoly tungstate supported on β-zeolite catalyst[J]. Molecular Catalysis, 2019,466: 52-59. DOI: 10.1016/j.mcat.2018.12.024.
[21] PATEL S M, CHUDASAMA U V, GANESHPURE P A. Cyclodehydration of 1,4-butanediol catalyzed by metal(IV) phosphates[J]. Reaction Kinetics and Catalysis Letters, 2002, 76(2): 317-325. DOI: 10.1023/A:1016544213522.
[22] KAMIYA Y, SAKATA S, YOSHINAGA Y, et al. Zirconium phosphate with a high surface area as a water-tolerant solid acid[J]. Catalysis Letters, 2004, 94(1): 45-47. DOI: 10.1023/B:CATL.0000019329.82828.e4.
[23] HATTORI T, ISHIGURO A, MURAKAMI Y. Acidity of crystalline zirconium phosphate[J]. Journal of Inorganic and Nuclear Chemistry, 1978,40(6): 1107-1111. DOI: 10.1016/0022-1902(78)80519-3.
[24] WEINGARTEN R, TOMPSETT G A, CONNER W C, et al. Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: the role of Lewis and Brønsted acid sites[J]. Journal of Catalysis, 2011, 279(1): 174-182. DOI: 10.1016/j.jcat.2011.01.013.
[25] YOU X F, XU Y M, LU T L, et al. Catalytic oppenauer oxidation of secondary alcohols over post-synthesized Sn-Beta[J]. Catalysis Science & Technology, 2023, 13(8): 2551-2558. DOI: 10.1039/D3CY00185G.
[26] YE L, HAN Y W, BAI H, et al. HZ-ZrP catalysts with adjustable ratio of Brønsted and Lewis acids for the one-pot value-added conversion of biomass-derived furfural[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(19): 7403-7413. DOI: 10.1021/acssuschemeng.0c01259.
[27] LIN X Z, REN T Z, YUAN Z Y. Mesoporous zirconium phosphonate materials as efficient water-tolerable solid acid catalysts[J]. Catalysis Science & Technology, 2015, 5(3): 1485-1494. DOI: 10.1039/C4CY01110D.
[28] FAN X J, ZHANG B Q, SU Z Y, et al. Preparation, surface acidity and catalytic performance of Beta/ZSM-5 composite molecular sieve[J]. Chemical Physics, 2022, 558: 111512. DOI: 10.1016/j.chemphys.2022.111512.
[29] JIMÉNEZ-JIMÉNEZ J, MAIRELES-TORRES P, OLIVERA-PASTOR P, et al. Surfactant-assisted synthesis of a mesoporous form of zirconium phosphate with acidic properties[J]. Advanced Materials, 1998, 10(10): 812-815. DOI: 10.1002/(SICI)1521-4095(199807)10:10<812::AID-ADMA812>3.0.CO;2-A.
[30] MIAO Z C, XU L L, SONG H L, et al. One-pot synthesis of ordered mesoporous zirconium oxophosphate with high thermostability and acidic properties[J]. Catalysis Science & Technology, 2013, 3(8): 1942-1954. DOI: 10.1039/C3CY00085K.
[31] TANG B, DAI W L, SUN X M, et al. Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust lewis acid catalyst for the ring-opening aminolysis of epoxides[J]. Green Chemistry, 2015, 17(3): 1744-1755. DOI: 10.1039/C4GC02116A.
[32] LI P, LIU G Q, WU HH, et al. Postsynthesis and selective oxidation properties of nanosized Sn-Beta zeolite[J]. Journal of Physical Chemistry C, 2011, 115(9): 3663-3670. DOI: 10.1021/jp1076966.
[33] LIN X Z, YUAN Z Y. Synthesis of mesoporous zirconium organophosphonate solid-acid catalysts[J]. European Journal of Inorganic Chemistry, 2012, 2012(16): 2661-2664. DOI: 10.1002/ejic.201101064.
[34] LU TL, YOU X F, ZONG Y L, et al. Production of γ-valerolactone from ethyl levulinate over hydrothermally synthesized Sn-Beta under mild conditions[J]. Fuel, 2023, 332(Part 2): 126262. DOI: 10.1016/j.fuel.2022.126262.
[35] HARRIS J W, CORDON M J, DI IORIO J R, et al. Titration and quantification of open and closed Lewis acid sites in Sn-Beta zeolites that catalyze glucose isomerization[J]. Journal of Catalysis, 2016, 335: 141-154. DOI: 10.1016/j.jcat.2015.12.024.
[36] LI F K, FRANCE L J, CAI Z P, et al. Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites[J]. Applied Catalysis B: Environmental, 2017, 214: 67-77. DOI: 10.1016/j.apcatb.2017.05.013.
[37] LIU X F, PAN H, ZHANG H, et al. Efficient catalytic upgradation of bio-based furfuryl alcohol to ethyl levulinate using mesoporous acidic MIL-101(Cr)[J]. ACS Omega, 2019,4(5): 8390-8399. DOI: 10.1021/acsomega.9b00480.
[38] MA M W, LIANG N, HOU P, et al.Humins with efficient electromagnetic wave absorption: a by-product of furfural conversion to isopropyl levulinate via a tandem catalytic reaction in one-pot[J]. Chemistry, 2021, 27(49): 12659-12666. DOI: 10.1002/chem.202101928.
[39] MA M W, HOU P, ZHANG P, et al. Tandem catalysis of furfural to γ-valerolactone over polyoxometalate-based metal-organic frameworks: exploring the role of confinement in the catalytic process[J]. Renewable Energy, 2024, 227: 120474. DOI: 10.1016/j.renene.2024.120474.
[40] WINOTO H P, FIKRI Z A, HA J M, et al. Heteropolyacid supported on Zr-Beta zeolite as an active catalyst for one-pot transformation of furfural to γ-valerolactone[J]. Applied Catalysis B: Environmental, 2019, 241: 588-597. DOI: 10.1016/j.apcatb.2018.09.031.
[41] MORALES G, MELERO J A, IGLESIAS J, et al. From levulinic acid biorefineries to γ-valerolactone (GVL) using a bi-functional Zr-Al-Beta catalyst[J]. Reaction Chemistry & Engineering, 2019,4(10): 1834-1843. DOI: 10.1039/C9RE00117D.
[42] ZHANG J, DONG K J, LUO W M, et al. Selective transfer hydrogenation of furfural into furfuryl alcohol on Zr-containing catalysts using lower alcohols as hydrogen donors[J]. ACS Omega, 2018, 3(6): 6206-6216. DOI: 10.1021/acsomega.8b00138.
[43] YANG G, PIDKO E A, HENSEN E J M. Mechanism of Brønsted acid-catalyzed conversion of carbohydrates[J]. Journal of Catalysis, 2012, 295: 122-132. DOI: 10.1016/j.jcat.2012.08.002.
[1] 左钧元, 李欣彤, 曾子涵, 梁超, 蔡进军. 金属有机骨架基催化剂在糠醛选择性加氢反应中的应用研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 28-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何安康, 陈艳平, 扈应, 黄瑞章, 秦永彬. 融合边界交互信息的命名实体识别方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 1 -11 .
[2] 卢展跃, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于掩码注意力与多特征卷积网络的关系抽取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 12 -22 .
[3] 齐丹丹, 王长征, 郭少茹, 闫智超, 胡志伟, 苏雪峰, 马博翔, 李时钊, 李茹. 基于主题多视图表示的零样本实体检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 23 -34 .
[4] 黄川洋, 程灿儿, 李松威, 陈鸿东, 张秋楠, 张钊, 邵来鹏, 唐剑, 王咏梅, 郭奎奎, 陆航林, 胡君辉. 带涂覆层的长周期光纤光栅温度传感特性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 35 -42 .
[5] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1 -14 .
[6] 黎宗孝, 张健, 罗鑫悦, 赵嶷飞, 卢飞. 基于K-means和Adam-LSTM的机场进场航迹预测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 15 -23 .
[7] 宋铭楷, 朱成杰. 基于H-WOA-GWO和区段修正策略的配电网故障定位研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 24 -37 .
[8] 陈禹, 陈磊, 张怡, 张志瑞. 基于QMD-LDBO-BiGRU的风速预测模型[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 38 -57 .
[9] 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58 -68 .
[10] 李志欣, 匡文兰. 结合互注意力空间自适应和特征对集成判别的细粒度图像分类[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 69 -82 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发