广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 168-182.doi: 10.16088/j.issn.1001-6600.2022011804

• 综述 • 上一篇    下一篇

自由基稀土配合物:研究现状、挑战与展望

严海涵, 张文雄*   

  1. 北京大学 化学与分子工程学院, 北京 100871
  • 收稿日期:2022-01-18 修回日期:2022-04-11 出版日期:2022-09-25 发布日期:2022-10-18
  • 通讯作者: 张文雄(1972—), 男, 湖南宁乡人, 北京大学教授, 博导。 E-mail: wx_zhang@pku.edu.cn
  • 基金资助:
    国家杰出青年科学基金(21725201); 国家自然科学基金委重大项目(21890721); 国家重点研发计划(2021YFF0701600); 北京分子科学国家研究中心资助项目

Radical Rare-earth Metal Complexes: Advances, Challenges and Prospects

YAN Haihan, ZHANG Wenxiong*   

  1. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2022-01-18 Revised:2022-04-11 Online:2022-09-25 Published:2022-10-18

摘要: 自由基稀土配合物因其独特的化学反应活性和磁学性质,近30余年来一直受到许多课题组的重视。科学家们一直在尝试自由基配体、闭壳层配体和稀土金属间的不同组合,以调控自由基稀土配合物的不同性质。本文按照该领域历史的发展脉络,分中性自由基配体和自由基阴离子配体两部分综述现有自由基稀土配合物的常见结构、配体类型、配位模式,以及不同类型自由基稀土配合物的化学反应性和磁学性质,并对该领域的发展前景做出展望。

关键词: 稀土金属, 自由基, 配体, 配位化学, 配合物

Abstract: In the family of rare-earth metal complexes, radical rare-earth metal complexes have attracted great attention of the researchers in the past 30 years because of their unique chemical reactivities and magnetic properties. To fine-tune the different properties of radical rare-earth metal complexes, scientists have developed different combinations of radical ligands, closed-shell ligands and rare-earth metal centers. Herein, the reported structures, ligand types, coordination modes, chemical reactivity and magnetic properties of radical rare-earth metal complexes were reviewed according to the history of this field, and was divided into two parts as neutral/anionic radical ligands. The outlook of this field was also presented.

Key words: rare-earth metal, radical, ligand, coordination chemistry, complex

中图分类号: 

  • O614.33
[1]钱长涛. 王春红, 陈耀峰. 稀土金属有机配合物化学60年[J]. 化学学报, 2014, 72(8): 883-905.
[2]EVANS W J. Perspectives in reductive lanthanide chemistry[J]. Coordination Chemistry Reviews, 2000, 206/207: 263-283.
[3]CHEN J Z, GAO Y S, MARKS T J. Early transition metal catalysis for olefin-polar monomer copolymerization[J]. Angewandte Chemie International Edition, 2020, 59(35): 14726-14735.
[4]DONATI F, RUSPONI S, STEPANOW S, et al. Magneti cremanence in single atoms[J]. Science, 2016, 352(6283): 318-321.
[5]ZHU Z H, GUO M, LI X L, et al. Molecular magnetism of lanthanide: advances and perspectives[J]. Coordination Chemistry Reviews, 2019, 378: 350-364.
[6]MARIN R, BRUNET G, MURUGESU M. Shining new light on multifunctional lanthanide single-molecule magnets[J]. Angewandte Chemie International Edition, 2021, 60(4): 1728-1746.
[7]BENELLI C, CANESCHI A, GALLESCHI D, et al. Structureand magnetic properties of a gadolinium hexafluoroacetylacetonate adduct with the radical 4,4,5,5-tetramethyl-2-phenyl-4,5-dihydro-1h-imidazole 3-oxide 1-oxyl[J]. Angewandte Chemie International Edition in English, 1987, 26(9): 913-915.
[8]BENELLI C, CANESCHI A, GATTESCHI D, et al. Structure andmagnetic properties of linear-chain complexes of rare-earth ions (gadolinium, europium) with nitronyl nitroxides[J]. Inorganic Chemistry, 1989, 28(2): 275-280.
[9]BENELLI C, CANESCHI A, GATTESCHI D, et al. Linear-chain gadolinium(III) nitronyl nitroxide complexes with dominant next-nearest-neighbor magnetic interactions[J]. Inorganic Chemistry, 1990, 29(21): 4223-4228.
[10]BENELLI C, CANESCHI A, GATTESCHI D, et al. Gadolinium(III)complexes with pyridine-substituted nitronyl nitroxide radicals[J]. Inorganic Chemistry, 1992, 31(5): 741-746.
[11]LESCOP C, LUNEAU D, BELORIZKY E, et al. Unprecedented antiferromagnetic metal-ligand interactions in gadolinium-nitroxide derivatives[J]. Inorganic Chemistry, 1999, 38(24): 5472-5473.
[12]LESCOP C, BUSSIÈRE G, BEAULAC R, et al. Magnetic and optical properties of nitroxide radicals and their lanthanide complexes[J]. Journal of Physics and Chemistry of Solids, 2004, 65(4): 773-779.
[13]CLOKE F G N, DE LEMOS H C, SAMEH A A. Homoleptic diazadiene complexes of titanium, yttrium, and some lanthanoid elements[J]. Journal of the Chemical Society, Chemical Communications, 1986(17): 1344-1345.
[14]KHUSNIYAROV M M, WEYHERMÜLLER T, BILL E, et al. Reversible electron transfer coupled to spin crossover in an iron coordination salt in the solid state[J]. Angewandte Chemie International Edition, 2008, 47(7): 1228-1231.
[15]BOGANI L, SANGREGORIO C, SESSOLI R, et al. Molecular engineering for single-chain-magnet behavior in a one-dimensional dysprosium-nitronyl nitroxide compound[J]. Angewandte Chemie International Edition, 2005, 44(36): 5817-5821.
[16]GATTESCHI D, SESSOLI R, VILLAIN J, Molecularnanomagnets[M]. Oxford: Oxford University Press, 2006: 1-389.
[17]XU J X, MA Y, XU G F, et al. A four-spin ring with alternating magnetic interactions formed by pyridine-substituted nitronyl nitroxide radicals and Gd(III) ions: crystal structure and magnetic properties[J]. Inorganic Chemistry Communications, 2008, 11(11): 1356-1358.
[18]MENG Y S, LIU T. Manipulating spin transition to achieve switchable multifunctions[J]. Accounts of Chemical Research, 2019, 52(5): 1369-1379.
[19]IKEGAYA N, KANETOMO T, MURAKAMI R, et al. Triplyradical-coordinated gadolinium(III) complex as a high-spin s=5 assembly[J]. Chemistry Letters, 2011, 41(1): 82-83.
[20]LU E L, CHU J X, CHEN Y F. Scandiumterminal imido chemistry[J]. Accounts of Chemical Research, 2018, 51(2): 557-566.
[21]COMBA P, MARTIN B. Chapter nine-molecular modeling of transition metal and rare earth coordination compounds[M]. Orlando: Academic Press, 2019: 305-322.
[22]HU P, ZHU M, MEI X L, et al. Single-molecule magnets based on rare earth complexes with chelating benzimidazole-substituted nitronyl nitroxide radicals[J]. Dalton Transactions, 2012, 41(48): 14651-14656.
[23]FAIZOVA R, FADAEI-TIRANI F, BERNIER-LATMANI R, et al. Ligand-supported facile conversion of uranyl(VI) into uranium(IV) in organic and aqueous media[J]. Angewandte Chemie International Edition, 2020, 59(17): 6756-6759.
[24]MEI X L, MA Y, LI L C, et al. Ligand field-tuned single-molecule magnet behaviour of 2p-4f complexes[J]. Dalton Transactions, 2012, 41(2): 505-511.
[25]DING Y S, CHILTON N F, WINPENNY R E P, et al. On approaching the limit of molecular magnetic anisotropy: a near-perfect pentagonal bipyramidal dysprosium(III) single-molecule magnet[J]. Angewandte Chemie International Edition, 2016, 55(52): 16071-16074.
[26]MENG Y S, JIANG S D, WANG B W, et al. Understanding the magnetic anisotropy toward single-ion magnets[J]. Accounts of Chemical Research, 2016, 49(11): 2381-2389.
[27]NISHIURA M, GUO F, HOU Z M. Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation[J]. Accounts of Chemical Research, 2015, 48(8): 2209-2220.
[28]KING R B, Chapter one-metal-metal interactions in binuclear cyclopentadienylmetal carbonyls: extending insight from experimental work through computational studies[M]// VAN ELDIK R, PUCHTA R. Advances in Inorganic Chemistry. Orlando: Academic Press, 2019: 3-32.
[29]CANESCHI A, DEI A, GATTESCHI D, et al. Antiferromagnetic coupling in a gadolinium(III) semiquinonato complex [J]. Angewandte Chemie International Edition, 2000, 39(1): 246-248.
[30]FEGLER W, VENUGOPAL A, KRAMER M, et al. Molecular rare-earth-metal hydrides in non-cyclopentadienyl environments[J]. Angewandte Chemie International Edition, 2015, 54(6): 1724-1736.
[31]DEMIR S, JEON I R, LONG J R, et al. Radical ligand-containing single-molecule magnets[J]. Coordination Chemistry Reviews, 2015, 289/290: 149-176.
[32]KANETOMO T, ISHIDA T. Preparation and characterization of [Gd(hfac)3(DTBN)(H2O)](DTBN=Di-t-butyl Nitroxide). Ferromagnetic Gd3+-Gd3+ super-superexchange[J]. Chemical Communications, 2014, 50(19): 2529-2531.
[33]ISHIDA T, MURAKAMI R, KANETOMO T, et al. Magnetic study on radical-gadolinium(III) complexes. Relationship between the exchange coupling and coordination structure[J]. Polyhedron, 2013, 66: 183-187.
[34]NOREL L, CHAMOREAU L M, JOURNAUX Y, et al. Verdazyl-lanthanide(III) one dimensional compounds: synthesis, structure and magnetic properties[J]. Chemical Communications, 2009(17): 2381-2383.
[35]KAIM W. The transition metal coordination chemistry of anion radicals[J]. Coordination Chemistry Reviews, 1987, 76: 187-235.
[36]DELANO I V F, CASTELLANOS E, McCRACKEN J, et al. A rare earth metallocene containing a 2,2′-azopyridyl radical anion[J]. Chemical Science, 2021, 12(46): 15219-15228.
[37]RECKNAGEL A, NOLTEMEYER M, EDELMANN F T. Organolanthanid(II)chemie:reaktionen von Cp2Sm(THF)2 mit 1,4-diazadienen und cyclooctatetraen[J]. Journal of Organometallic Chemistry, 1991, 410(1): 53-61.
[38]KAUPP M, STOLL H, PREUSS H, et al. Theoretical and experimental study of diamagnetic and paramagnetic products from thermal and light-induced alkyl transfer between zinc or magnesium dialkyls and 1,4-diaza-1,3-butadiene substrates [J]. Journal of the American Chemical Society, 1991, 113(15): 5606-5618.
[39]BOCHKAREV M N, TRIFONOV A A, CLOKE F G N, et al. Synthesis,magnetic susceptibility and X-ray crystal structure of (tBuNCHCHNtBu)3Yb[J]. Journal of Organometallic Chemistry, 1995, 486(1/2): 177-182.
[40]TRIFONOV A A. Reactions of ytterbocenes with diimines: steric manipulation of reductive reactivity[J]. European Journal of Inorganic Chemistry, 2007(20): 3151-3167.
[41]MOORE J A, COWLEY A H, GORDON J C. Mediating oxidation states in decamethyleuropocene complexes. The role of the diazabutadiene fragment[J]. Organometallics, 2006, 25(22): 5207-5209.
[42]WALTER M D, BERG D J, ANDERSEN R A. Coordination of 1,4-diazabutadiene ligands to decamethylytterbocene: additional examples of spin coupling in ytterbocene complexes[J]. Organometallics, 2007, 26(9): 2296-2307.
[43]CUI P, CHEN Y F, WANG G P, et al. Divalent ytterbium boratabenzene complex (C5H5BNPh2)2Yb (THF)2: synthesis, structure, and solvent-mediated redox transformation[J]. Organometallics, 2008, 27(15): 4013-4016.
[44]TRIFONOV A A, FEDOROVA E A, IKORSKII V N, et al. Solvent-mediated redox transformations of ytterbium bis (indenyl)diazabutadiene complexes[J]. European Journal of Inorganic Chemistry, 2005, 2005(14): 2812-2818.
[45]TRIFONOV A A, BOROVKOV I A, FEDOROVA E A, et al. Ytterbocenes as one- and two-electron reductants in their reactions with diazadienes: YbIII mixed-ligand bent-sandwich complexes containing a dianion of diazabutadiene[J]. Chemistry: a European Journal, 2007, 13(17): 4981-4987.
[46]FEDUSHKIN I L, MASLOVA O V, BARANOV E V, et al. Redox isomerism in the lanthanide complex[(dpp-Bian)Yb(DME)(μ-Br)]2 (dpp-bian=1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene)[J]. Inorganic Chemistry, 2009, 48(6): 2355-2357.
[47]FEDUSHKIN I L, MASLOVA O V, LUKOYANOV A N, et al. Anionic and neutral bis (diimine)lanthanide complexes [J]. Comptes Rendus Chimie, 2010, 13(6/7): 584-592.
[48]FEDUSHKIN I L, MASLOVA O V, MOROZOV A G, et al. Genuine redox isomerism in a rare-earth-metal complex[J]. Angewandte Chemie International Edition, 2012, 51(42): 10584-10587.
[49]TRIFONOV A A, GUDILENKOV I D, LARIONOVA J, et al. Half-sandwich lanthanide(III) complexes coordinated by two α-iminopyridine radical anions[J]. Organometallics, 2009, 28(23): 6707-6713.
[50]TRIFONOV A A, SHESTAKOV B G, LYUBOV D M, et al. Synthesis,structure, and magnetic properties of a YbIII complex with the iminopyridine radical-anionic ligand[J]. Russian Chemical Bulletin, 2018, 67(1): 50-55.
[51]SCHULTZ M, BONCELLA J M, BERG D J, et al. Coordination of 2,2′-bipyridyl and 1,10-phenanthroline to substituted ytterbocenes: an experimental investigation of spin coupling in lanthanide complexes[J]. Organometallics, 2002, 21(3): 460-472.
[52]BOOTH C H, WALTER M D, KAZHDAN D, et al. Decamethylytterbocene complexes of bipyridines and diazabutadienes: multiconfigurational ground states and open-shell singlet formation[J]. Journal of the American Chemical Society, 2009, 131(18): 6480-6491.
[53]BOOTH C H, KAZHDAN D, WERKEMA E L, et al. Intermediate-valence tautomerism in decamethylytterbocene complexes of methyl-substituted bipyridines[J]. Journal of the American Chemical Society, 2010, 132(49): 17537-17549.
[54]CANESCHI A, DEI A, GATTESCHI D, et al. Antiferromagnetic coupling between rare earth ions and semiquinones in a series of 1∶1 complexes[J]. Dalton Transactions, 2004(7): 1048-1055.
[55]WERNER D, ZHAO X F, BEST S P, et al. Bulky ytterbium formamidinates stabilise complexes with radical ligands, and related samarium “tetracyclone” chemistry[J]. Chemistry: a European Journal, 2017, 23(9): 2084-2102.
[56]VAN VELZEN N J C, HARDER S. Deca-arylsamarocene: an unusually inert Sm(II) sandwich complex[J]. Organometallics, 2018, 37(14): 2263-2271.
[57]FEDUSHKIN I L, MASLOVA O V, HUMMERT M, et al. One- and two-electron-transfer reactions of (dpp-Bian)Sm(dme)3 [J]. Inorganic Chemistry, 2010, 49(6): 2901-2910.
[58]MACDONALD M R, ZILLER J W, EVANS W J. Coordination and reductive chemistry of tetraphenylborate complexes of trivalent rare earth metallocene cations, [(C5Me5)2Ln][(μ-Ph)2BPh2][J]. Inorganic Chemistry, 2011, 50(9): 4092-4106.
[59]ORTU F, LIU J J, BURTON M, et al. Analysis of lanthanide-radical magnetic interactions in Ce(III) 2, 2′-bipyridyl complexes[J]. Inorganic Chemistry, 2017, 56(5): 2496-2505.
[60]KISSEL A A, LYUBOV D M, MAHROVA T V, et al. Rare-earth dichloro and bis(alkyl) complexes Supported by bulky amido-imino ligand. Synthesis, structure, reactivity and catalytic activity in isoprene polymerization[J]. Dalton Transactions, 2013, 42(25): 9211-9225.
[61]HOU Z M, YAMAZAKI H, KOBAYASHI K, et al. Novel crystal structure of ytterbium(II)-benzophenone dianion complex and its reaction with 2,6-di-tert-butyl-4-methylphenol[J]. Journal of the Chemical Society, Chemical Communications, 1992(9): 722-724.
[62]HOU Z M, MIYANO T, YAMAZAKI H, et al. Well-defined metal ketyl complex: Sm(ketyl)(OAr)2 (THF)2 and its reversible coupling to a disamarium(III) pinacolate[J]. Journal of the American Chemical Society, 1995, 117(15): 4421-4422.
[63]HOU Z M, WAKATSUKI Y. Trapping of radicals in the coordination spheres of metals[J]. Chemistry: a European Journal, 1997, 3(7): 1005-1008.
[64]HOU Z M, FUJITA A, ZHANG Y G, et al. One-electron reduction of aromatic ketones by low-valent lanthanides. Isolation, structural characterization, and reactivity of lanthanide ketyl complexes[J]. Journal of the American Chemical Society, 1998, 120(4): 754-766.
[65]ISHIKAWA N, SUGITA M, ISHIKAWA T, et al. Lanthanide double-decker complexes functioning as magnets at the single-molecular level[J]. Journal of the American Chemical Society, 2003, 125(29): 8694-8695.
[66]ISHIKAWA N, SUGITA M, TANAKA N, et al. Upward temperature shift of the intrinsic phase lag of the magnetization of bis(phthalocyaninato)terbium by ligand oxidation creating an S=1/2 spin[J]. Inorganic Chemistry, 2004, 43(18): 5498-5500.
[67]GANIVET C R, BALLESTEROS B, DE LA TORRE G, et al. Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo- and heteroleptic Tb(Ⅲ) bis (phthalocyaninate)[J]. Chemistry: a European Journal, 2013, 19(4): 1457-1465.
[68]DEMIR S, ZADROZNY J M, NIPPE M, et al. Exchange coupling and magnetic blocking in bipyrimidyl radical-bridged dilanthanide complexes[J]. Journal of the American Chemical Society, 2012, 134(45): 18546-18549.
[69]RINEHART J D, FANG M, EVANS W J, et al. Strong exchange and magnetic blocking in N3-2-radical-bridged lanthanide complexes[J]. Nature Chemistry, 2011, 3(7): 538-542.
[70]GOULD C A, MU E, VIERU V, et al. Substituent effects on exchange coupling and magnetic relaxation in 2,2′-bipyrimidine radical-bridged dilanthanide complexes[J]. Journal of the American Chemical Society, 2020, 142(50): 21197-21209.
[71]YAN H H, WU B T, ZHAO X K, et al. Rare-earth metal boroxide with formal triple metal-oxygen orbital interaction: synthesis from B(C6F5)3·H2O and radical-anion ligated rare-earth metal amides[J]. CCS Chemistry, 2020, 3(11): 2772-2781.
[72]YAN H H, WU B T, MENG Y S, et al. Synthesis,structure, and magnetic properties of rare-earth bis(diazabutadiene) diradical complexes[J]. Inorganic Chemistry, 2021, 60(3): 1315-1319.
[73]YAN H H, WEI J N, ZHANG W X. Synthesis,structures, and reactivity of diazabutadiene-ligated rare-earth radical complexes bearing adaptable auxiliary ligands[J]. Organometallics, 2021, 40(19): 3245-3252.
[74]ZHANG R P, ZHANG R Z, JIAN R J, et al. Bio-inspired lanthanum-ortho-quinone catalysis for aerobic alcohol oxidation: semi-quinone anionic radical as redox ligand[J]. Nature Communications, 2022, 13(1): 428.
[1] 谢婷婷, 谢瑶, 倪青玲. 含有机膦金炔三氮唑配合物的合成表征及晶体结构[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 92-99.
[2] 杨政敏,张艳军,王升匀,胡先运,李俊. 银杏果壳多糖多酚提取及清除自由基活性研究[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 105-110.
[3] 聂英涛, 彭峰林, 李少杰, 王紫微, 欧婵. 龙眼多糖通过下调氧自由基水平的抗疲劳作用研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 157-161.
[4] 邹碧群. 吴茱萸、桑葚、柚子和香蕉抗氧化活性研究[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 50-54.
[5] 刘汉甫, 马献力, 陈素一, 沈雪松, 黄富平. 锌三元配合物的合成及其抑菌活性研究[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 103-107.
[6] 蒋丽萍, 黄婉云, 刘冬成, 梁福沛. 水杨醛联二萘酚二甲酰腙Zn(Ⅱ)、Cu(Ⅱ)配合物的合成及晶体结构[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 93-98.
[7] 霍红月, 李仲庆, 覃其品, 刘延成, 陈振锋. 邻香草醛缩胡椒乙胺席夫碱锌(Ⅱ)配合物的研究[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 65-73.
[8] 董金超, 温桂清, 刘庆业, 梁爱惠, 蒋治良. 适配体修饰纳米金催化共振瑞利散射光谱法测定血红素[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 191-196.
[9] 陈思园, 杨扬, 彭艳, 刘延成. 一种新型希夫碱钯配合物的晶体结构及抗肿瘤活性研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 81-86.
[10] 李海叶, 蒋毅民, 蒙秀金. 邻菲咯啉-磺基丙氨酸钴(Ⅱ)配合物的合成与晶体结构[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 72-75.
[11] 王修建, 丛新宇, 蒋选丰, 马凯, 张子豪, 曾建强, 倪青玲. 由Au…Au键诱导的Au-有机膦一维配位聚合物的合成、结构及表征[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 189-193.
[12] 梁福沛, 刘冬成, 聂传丽. [Cd2(BHP)2(2,6-pda)2(H2O)2]·H2O配合物的合成、结构及荧光性质[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 194-200.
[13] 宋丽华, 金一, 梁福沛. 含氮多羧酸钴(Ⅱ)-钕(Ⅲ)异核配合物合成和晶体结构[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 106-110.
[14] 尚静, 倪青玲, 桂柳成, 王修建, 黄廷洪, 马凯, 曾建强. 一维配位聚合物{HgBr22-Cu(C26H22O2N4)]}n的合成与晶体结构[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 61-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[2] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[3] 帖军, 隆娟娟, 郑禄, 牛悦, 宋衍霖. 基于SK-EfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 104 -114 .
[4] 翁烨, 邵德盛, 甘淑. 等式约束病态最小二乘的主成分Liu估计解法[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 115 -125 .
[5] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[6] 贺青, 刘剑, 韦联福. 微弱电磁信号的物理极限检测:单光子探测器及其研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 1 -23 .
[7] 田芮谦, 宋树祥, 刘振宇, 岑明灿, 蒋品群, 蔡超波. 逐次逼近型模数转换器研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 24 -35 .
[8] 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36 -48 .
[9] 梁钰婷, 罗玉玲, 张顺生. 基于压缩感知的混沌图像加密研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 49 -58 .
[10] 郝雅茹, 董力, 许可, 李先贤. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59 -71 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发