广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (4): 157-164.doi: 10.16088/j.issn.1001-6600.2024041401

• 生态环境科学研究 • 上一篇    下一篇

氧化石墨烯介导的荧光强度和荧光偏振同时检测农药啶虫脒

尹南竹1,2, 黄茜1,2, 赵晶瑾1,2*   

  1. 1.广西生态脆弱区环境过程与修复重点实验室(广西师范大学), 广西 桂林 541006;
    2.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006
  • 收稿日期:2024-04-14 修回日期:2024-06-27 出版日期:2025-07-05 发布日期:2025-07-14
  • 通讯作者: 赵晶瑾(1984—),女,湖南慈利人,广西师范大学教授,博士。E-mail: jzhao12@163.com
  • 基金资助:
    国家自然科学基金(22376040,21966009)

Fluorescence Intensity and Polarization Method for Acetamiprid Detection Based on Graphene Oxide

YIN Nanzu1,2, HUANG Qian1,2, ZHAO Jingjin1,2*   

  1. 1. Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China
  • Received:2024-04-14 Revised:2024-06-27 Online:2025-07-05 Published:2025-07-14

摘要: 本研究基于氧化石墨烯(GO)的荧光猝灭效应和质量放大效应,建立一种荧光强度和荧光偏振双信号同时检测方法,用于农药啶虫脒的定量分析。标记有荧光分子的核酸信号探针吸附在GO表面时,检测到较低的荧光强度和较高的偏振信号。当啶虫脒与其适配体结合后,释放的互补核酸探针与信号探针杂交而使其远离石墨烯,此时得到增强的荧光强度和降低的偏振信号。实验考察不同浓度啶虫脒的荧光强度和偏振信号之间的关系,并优化目标物识别时间、氧化石墨烯的浓度和反应时间等条件。实验结果表明:在优化的实验条件下,荧光偏振法(LOD=5 nmol/L)比荧光强度(LOD=50 nmol/L)的检出限更低,而荧光强度法更稳定。该方法具有较好的选择性,并实现对芹菜叶和湖水中啶虫脒的分析。

关键词: 啶虫脒, 氧化石墨烯, 荧光分析, 荧光偏振, 荧光猝灭

Abstract: A fluorescence intensity and polarization method for simultaneous detection of pesticide acetamiprid was established based on the fluorescence quenching effect and mass amplification effect of graphene oxide (GO). When nucleic acid signal probe which labeled with fluorescent molecule FAM attached to the GO surface, a lower fluorescence intensity and a higher polarization signal was detected. After acetamiprid binds to its aptamer, the released complementary probe was hybridized with the signal probe to move it away from graphene, and then the enhanced fluorescence intensity and the reduced polarization signal are obtained. The relationship between the fluorescence intensity or polarization signal and different concentrations of acetamiprid was examined, and the conditions such as the target recognition time, GO concentration and reaction time were optimized. Under the optimized experimental conditions, the fluorescence polarization detection method (LOD=5 nmol/L) had a lower detection limit than the fluorescence intensity method (LOD=50 nmol/L), while the fluorescence intensity method was more stable. This method showed good selectivity and achieved spiked recovery analysis of acetamiprid in celery leaves and lake water.

Key words: acetamiprid, graphene oxide, fluorescence analysis, fluorescence polarization, fluorescence quenching

中图分类号:  O657.3;X839.2;TQ450.263

[1] WANG J S, ZHANG D C, XU K K, et al. Electrochemical assay of acetamiprid in vegetables based on nitrogen-doped graphene/polypyrrole nanocomposites[J]. Mikrochimica Acta, 2022, 189(10): 395. DOI: 10.1007/s00604-022-05490-4.
[2] ZAMULE S M, DUPRE C E, MENDOLA M L, et al. Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid[J]. Ecotoxicology and Environmental Safety, 2021, 209: 111814. DOI: 10.1016/j.ecoenv.2020.111814.
[3] LUO J M, LI S H, WU Y W, et al. Electrochemical sensor for imidacloprid detection based on graphene oxide/gold nano/β-cyclodextrin multiple amplification strategy[J]. Microchemical Journal, 2022, 183: 107979. DOI: 10.1016/j.microc.2022.107979.
[4] PHOGAT A, SINGH J, KUMAR V, et al. Toxicity of the acetamiprid insecticide for mammals: a review[J]. Environmental Chemistry Letters, 2022, 20(2): 1453-1478. DOI: 10.1007/s10311-021-01353-1.
[5] THOMPSON D A, LEHMLER H J, KOLPIN D W, et al. A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health[J]. Environmental Science: Processes & Impacts, 2020, 22(6): 1315-1346. DOI: 10.1039/C9EM00586B.
[6] SOFI J A, DAR A A, JAN I, et al. Development and validation of gas chromatography with electron capture detection method using QuEChERS for pesticide residue determination in cucumber[J]. Biomedical Chromatography, 2023, 37(8): e5647. DOI: 10.1002/bmc.5647.
[7] FARAJZADEH M A, KHOSHMARAM L. Air-assisted liquid-liquid microextraction-gas chromatography-flame ionisation detection: a fast and simple method for the assessment of triazole pesticides residues in surface water, cucumber, tomato and grape juices samples[J]. Food Chemistry, 2013, 141(3): 1881-1887. DOI: 10.1016/j.foodchem.2013.05.088.
[8] WANG C, WU Q H, WU C X, et al. Application of dispersion-solidification liquid-liquid microextraction for the determination of triazole fungicides in environmental water samples by high-performance liquid chromatography[J]. Journal of Hazardous Materials, 2011, 185(1): 71-76. DOI: 10.1016/j.jhazmat.2010.08.124.
[9] ELMASTAS A, UMAZ A, PIRINC V, et al. Quantitative determination and removal of pesticide residues in fresh vegetables and fruit products by LC-MS/MS and GC-MS/MS[J]. Environmental Monitoring and Assessment, 2023, 195(2): 277. DOI: 10.1007/S10661-022-10910-2.
[10] STACHNIUK A, SZMAGARA A, CZECZKO R, et al. LC-MS/MS determination of pesticide residues in fruits and vegetables[J]. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52(7): 446-457. DOI: 10.1080/03601234.2017.1301755.
[11] XIE W, HAN C, QIAN Y, et al. Determination of neonicotinoid pesticides residues in agricultural samples by solid-phase extraction combined with liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(28): 4426-4433. DOI: 10.1016/j.chroma.2011.05.026.
[12] YI J L, LIU Z, LIU J H, et al. A label-free electrochemical aptasensor based on 3D porous CS/rGO/GCE for acetamiprid residue detection[J]. Biosensors & Bioelectronics, 2020, 148: 111827. DOI: 10.1016/j.bios.2019.111827.
[13] LI R Y, WANG J, LI N N, et al. Electrochemical detection of omethoate and acetamiprid in vegetable and fruit with high sensitivity and selectivity based on pomegranate-like gold nanoparticle and double target-induced DNA cycle signal amplification[J]. Sensors and Actuators B: Chemical, 2022, 359: 131597. DOI: 10.1016/J.SNB.2022.131597.
[14] XU C N, LIN M, WANG T Y, et al. Colorimetric aptasensor for on-site detection of acetamiprid with hybridization chain reaction-assisted amplification and smartphone readout strategy[J]. Food Control, 2022, 137: 108934. DOI: 10.1016/j.foodcont.2022.108934.
[15] ZHANG D C, LANG X D, HUI N, et al. Dual-mode electrochemical biosensors based on chondroitin sulfate functionalized polypyrrole nanowires for ultrafast and ultratrace detection of acetamiprid pesticide[J]. Microchemical Journal, 2022, 179: 107530. DOI: 10.1016/J.MICROC.2022.107530.
[16] GU Y, LI Q L, YIN M J, et al. A super-hydrophobic perfluoropolyether coated polytetrafluoroethylene sheets substrate for detection of acetamiprid surface-enhanced Raman spectroscopy[J].Pectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 278: 121373. DOI: 10.1016/J.SAA.2022.121373.
[17] MAO M X, XIE Z J, MA P F, et al. Design and optimizing gold nanoparticle-cDNA nanoprobes for aptamer-based lateral flow assay: application to rapid detection of acetamiprid[J]. Biosensors and Bioelectronics, 2022, 207: 114114. DOI: 10.1016/j.bios.2022.114114.
[18] SABERI Z, REZAEI B, ENSAFI A A. Fluorometric label-free aptasensor for detection of the pesticide acetamiprid by using cationic carbon dots prepared with cetrimonium bromide[J]. Mikrochimica Acta, 2019, 186(5): 273. DOI: 10.1007/s00604-019-3378-9.
[19] CHANG T W, WANG S H, CHIN I S, et al. Biomimetic affinity sensor for the ultrasensitive detection of neonicotinoids[J]. Biosensors and Bioelectronics, 2023, 239: 115630. DOI: 10.1016/j.bios.2023.115630.
[20] GUO Q, ZHANG J, SUN H Y, et al. A graphene oxide-based covalent resorufin-conjugated fluorescence “OFF-ON” probe for detection of hydrazine[J]. Chemistry, 2022, 17(12): e202200060. DOI: 10.1002/asia.202200060.
[21] 毛芳芳,庞锦英,李建鸣,等.Fe3O4/氧化石墨烯复合纳米粒子的制备及其体外毒性评价[J].广西师范大学学报(自然科学版),2018,36(1):112-120. DOI: 10.16088/j.issn.1001-6600.2018.01.016.
[22] LIU D L, WANG Q Y, CHEN A M, et al. Ultrafast dynamics on fluorescence quenching of rhodamine 6G by graphene oxide[J]. Luminescence, 2021, 36(5): 1300-1305. DOI: 10.1002/bio.4056.
[23] ZHENG Y J, CHEN J Y, LI Y, et al. Dual-probe fluorescent biosensor based on T7 exonuclease-assisted target recycling amplification for simultaneous sensitive detection of microRNA-21 and microRNA-155[J]. Analytical and Bioanalytical Chemistry, 2021,413(6): 1605-1614. DOI: 10.1007/s00216-020-03121-6.
[24] 张怡雯,韦汶言,赵晶瑾.荧光偏振技术在生化分析检测中的研究进展[J].广西师范大学学报(自然科学版),2022,40(5):216-226. DOI: 10.16088/j.issn.1001-6600.2022030310.
[25] 肖雪,龙磊,左芳.基于氧化石墨烯的无酶循环放大荧光信号法检测DNA[J].西南民族大学学报(自然科学版),2023,49(5):509-516. DOI: 10.11920/xnmdzk.2023.05.005.
[26] 赵鄞瑞,覃英凤,赵晶瑾.基于氧化石墨烯纳米片增强的荧光偏振法检测碱性磷酸酶活性[J].分析试验室,2021,40(6):645-648. DOI: 10.13595/j.cnki.issn1000-0720.2020.102301.
[1] 苏迎杰, 王达菲, 杨文, 张孟洋, 侯东睿, 罗静, 孙庆功, 杨豪, 王剑峰. PDMS共混液制备PDMS/RGO-CO抗紫外超疏水多功能织物研究[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 138-146.
[2] 张怡雯, 韦汶言, 赵晶瑾. 荧光偏振技术在生化分析检测中的研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 216-226.
[3] 毛芳芳,庞锦英,李建鸣,陆春谊. Fe3O4/氧化石墨烯复合纳米粒子的制备及其体外毒性评价[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 112-120.
[4] 邹华, 周享春, 孙梅香, 王玉龙. 溴酚蓝与牛血清白蛋白的相互作用研究[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 82-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何安康, 陈艳平, 扈应, 黄瑞章, 秦永彬. 融合边界交互信息的命名实体识别方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 1 -11 .
[2] 卢展跃, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于掩码注意力与多特征卷积网络的关系抽取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 12 -22 .
[3] 齐丹丹, 王长征, 郭少茹, 闫智超, 胡志伟, 苏雪峰, 马博翔, 李时钊, 李茹. 基于主题多视图表示的零样本实体检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 23 -34 .
[4] 黄川洋, 程灿儿, 李松威, 陈鸿东, 张秋楠, 张钊, 邵来鹏, 唐剑, 王咏梅, 郭奎奎, 陆航林, 胡君辉. 带涂覆层的长周期光纤光栅温度传感特性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 35 -42 .
[5] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1 -14 .
[6] 黎宗孝, 张健, 罗鑫悦, 赵嶷飞, 卢飞. 基于K-means和Adam-LSTM的机场进场航迹预测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 15 -23 .
[7] 宋铭楷, 朱成杰. 基于H-WOA-GWO和区段修正策略的配电网故障定位研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 24 -37 .
[8] 陈禹, 陈磊, 张怡, 张志瑞. 基于QMD-LDBO-BiGRU的风速预测模型[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 38 -57 .
[9] 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58 -68 .
[10] 李志欣, 匡文兰. 结合互注意力空间自适应和特征对集成判别的细粒度图像分类[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 69 -82 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发