广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (2): 138-146.doi: 10.16088/j.issn.1001-6600.2022040401

• 研究论文 • 上一篇    下一篇

PDMS共混液制备PDMS/RGO-CO抗紫外超疏水多功能织物研究

苏迎杰1, 王达菲2, 杨文1, 张孟洋3, 侯东睿3, 罗静1, 孙庆功1, 杨豪3, 王剑峰3*   

  1. 1.郑州大学 化工学院,河南 郑州 450000;
    2.郑州卫生健康职业学院 基础医学系,河南 郑州 450000;
    3.郑州大学 生态与环境学院,河南 郑州 450000
  • 收稿日期:2022-04-04 修回日期:2022-05-13 出版日期:2023-03-25 发布日期:2023-04-25
  • 通讯作者: 王剑峰(1972—),女,河南淇县人,郑州大学副教授,博士。E-mail:1514903022@qq.com
  • 基金资助:
    国家自然科学基金(22178326)

Preparation of UV Resistant and Super Hydrophobic Multifunctional Fabric PDMS/RGO-CO by PDMS Blended Solution

SU Yingjie1, WANG Dafei2, YANG Wen1, ZHANG Mengyang3, HOU Dongrui3, LUO Jing1, SUN Qinggong1, YANG Hao3, WANG Jianfeng3*   

  1. 1. School of Chemical Engineering, Zhengzhou University, Zhengzhou Henan 450000, China;
    2. Department of Basic Medicine, Zhengzhou Health Vocational College, Zhengzhou Henan 450000, China;
    3. College of Ecology and Environment, Zhengzhou University, Zhengzhou Henan 450000, China
  • Received:2022-04-04 Revised:2022-05-13 Online:2023-03-25 Published:2023-04-25

摘要: 多功能棉织物(CO)可以进一步扩大棉织物的应用范围。本文利用正己烷和乙酸乙酯作为聚二甲基硅氧烷(PDMS)的共溶剂,并与还原氧化石墨烯(RGO)结合,制备具有抗紫外和超疏水性能的多功能棉织物(PDMS/RGO-CO),并通过改变正己烷和乙酸乙酯混合比例、棉织物浸渍共混液次数、PDMS浓度,探究最佳的制备工艺。结果表明,正己烷和乙酸乙酯体积比为7∶3、棉织物浸渍次数为2次、PDMS为100 g/L时,PDMS/RGO-CO的超疏水能力最好,接触角(CA)达到165.9°,紫外线防护系数(UPF)达到544.46。与此同时,PDMS/RGO-CO还表现出优异的防污性能和油水分离能力。

关键词: 棉织物, 聚二甲基硅氧烷, 还原氧化石墨烯, 超疏水, 抗紫外, 油水分离

Abstract: Multi-functional cotton fabric (CO) can expand the application range of cotton fabric. In this paper, a multi-functional cotton fabric (PDMS/RGO-CO) with UV resistance and super hydrophobicity was prepared for the first time by combining n-hexane and ethyl acetate as the co-solvent of polydimethylsiloxane (PDMS) and reduced graphene oxide (RGO). The optimum condition was developed by changing the mixture ratio of n-hexane and ethyl acetate, impregnation times with cotton fabric immersed in RGO dispersion and PDMS concentration. The results showed that multi-functional cotton fabric (PDMS/RGO-CO) had the best super hydrophobicity when the volume ratio of n-hexane to ethyl acetate was 7∶3, the impregnation times of cotton fabric was 2 times, the PDMS concentration was 100 g/L, the contact angle (CA) was 165.9°, and the ultraviolet protection coefficient (UPF) was 544.46. At the same time, PDMS/RGO-CO also showed excellent anti-fouling performance and oil-water separation ability.

Key words: cotton fabric, polydimethylsiloxane (PDMS), reduced graphene oxide, super hydrophobic, UV resistance, oil/water separation

中图分类号: 

  • TQ426.94
[1] LIN D M, ZENG X R, LI H Q, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206. DOI: 10.1016/j.jcis.2018.08.060.
[2] ZHU T X, LI S H, HUANG J Y, et al. Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation[J]. Materials & Design, 2017, 134: 342-351. DOI: 10.1016/j.matdes.2017.08.071.
[3] SHEN Y, ZHEN L L, HUANG D, et al. Improving anti-UV performances of cotton fabrics via graft modification using a reactive UV-absorber[J]. Cellulose, 2014, 21(5): 3745-3754. DOI: 10.1007/s10570-014-0367-3.
[4] FAROUK R, EL-KHARADLY E A, ELWAHY A H M, et al. Synthesis of new reactive dyes containing commercial UV-absorbers with enhanced simultaneous dyeing and anti-UV properties for cotton fabric[J]. Journal of the Indian Chemical Society, 2021, 98(2): 100022. DOI: 10.1016/j.jics.2021.100022.
[5] OTHMAN N H, ISMAIL M C, MUSTAPHA M, et al. Graphene-based polymer nanocomposites as barrier coatings for corrosion protection[J]. Progress in Organic Coatings, 2019, 135: 82-99. DOI: 10.1016/j.porgcoat.2019.05.030.
[6] ZHOU Y Y, MA Y B, LI X L, et al. Tunable rGO network in polymer coating for enhancing barrier property[J]. Materials Research Bulletin, 2020, 122: 110648. DOI: 10.1016/j.materresbull.2019.110648.
[7] WANG Z G, LIU J B, HAO X, et al. Enhanced power density of a supercapacitor by introducing 3D-interfacial graphene[J]. New Journal of Chemistry, 2020, 44(31): 13377-13381. DOI: 10.1039/d0nj02105a.
[8] LEE S P, ALI G A M, HEGAZY H H, et al. Optimizing reduced graphene oxide aerogel for a supercapacitor[J]. Energy & Fuels, 2021, 35(5): 4559-4569. DOI: 10.1021/acs.energyfuels.0c04126.
[9] BHATTACHARJEE S, MACINTYRE C R, WEN X Y, et al. Nanoparticles incorporated graphene-based durable cotton fabrics[J]. Carbon, 2020, 166: 148-163. DOI: 10.1016/j.carbon.2020.05.029.
[10] JOHNSON A P, GANGADHARAPPA H V, PRAMOD K. Graphene nanoribbons: a promising nanomaterial for biomedical applications[J]. Journal of Controlled Release, 2020, 325: 141-162. DOI: 10.1016/j.jconrel.2020.06.034.
[11] 毛芳芳,庞锦英,李建鸣,等.Fe3O4/氧化石墨烯复合纳米粒子的制备及其体外毒性评价[J].广西师范大学学报(自然科学版), 2018, 36(1): 112-120. DOI: 10.16088/j.issn.1001-6600.2018.01.016.
[12] BIE C B, YU H G, CHENG B, et al. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst[J]. Advanced Materials, 2021, 33(9): e2003521. DOI: 10.1002/adma.202003521.
[13] NEELGUND G M, OKI A. ZnO conjugated graphene: an efficient sunlight driven photocatalyst for degradation of organic dyes[J]. Materials Research Bulletin, 2020, 129: 110911. DOI: 10.1016/j.materresbull.2020.110911.
[14] BABAAHMADI V, ABUZADE R A, MONTAZER M. Enhanced ultraviolet-protective textiles based on reduced graphene oxide-silver nanocomposites on polyethylene terephthalate using ultrasonic-assisted in-situ thermal synthesis[J]. Journal of Applied Polymer Science, 2022, 139(21): 52196. DOI: 10.1002/app.52196.
[15] WANG D, MA J Z, LIU J J, et al. Intumescent flame-retardant and ultraviolet-blocking coating screen-printed on cotton fabric[J]. Cellulose, 2021, 28(4): 2495-2504. DOI: 10.1007/s10570-020-03669-7.
[16] 周福芹, 张志斌,杨海峰. 石墨烯改性棉织物的制备及其抗紫外、抗菌性能[J].印染助剂, 2019, 36(11): 16-19.
[17] GAO S W, DONG X L, HUANG J Y, et al. Co-solvent induced self-roughness superhydrophobic coatings with self-healing property for versatile oil-water separation[J]. Applied Surface Science, 2018, 459: 512-519. DOI: 10.1016/j.apsusc.2018.08.041.
[18] MAHIUDDIN M, OCHIAI B. Lemon juice assisted green synthesis of reduced graphene oxide and its application for adsorption of methylene blue[J]. Technologies, 2021, 9(4): 96.
[19] TISSERA N D, WIJESENA R N, PERERA J R, et al. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating[J]. Applied Surface Science, 2015, 324: 455-463. DOI: 10.1016/j.apsusc.2014.10.148.
[20] DASHAIRYA L, ROUT M, SAHA P. Reduced graphene oxide-coated cotton as an efficient absorbent in oil-water separation[J]. Advanced Composites and Hybrid Materials, 2018, 1(1): 135-148. DOI: 10.1007/s42114-017-0019-9.
[21] GUO F, WEN Q Y, PENG Y B, et al. Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(41): 21866-21874. DOI: 10.1039/c7ta05599d.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周正春. 互补序列研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 1 -16 .
[2] 杨烁祯, 张珑, 王建华, 张恒远. 声音事件检测综述[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 1 -18 .
[3] 杨生龙, 母庆闯, 张志华, 刘葵. 废旧锂离子电池回收利用技术进展[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 19 -26 .
[4] 李康良, 邱彩雄, 何爽, 黄春华, 伍冠一. 白介素-31参与瘙痒的研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 27 -35 .
[5] 卢许孟, 南新元, 夏斯博. 无模型坐标补偿积分滑模约束的自动驾驶汽车轨迹跟踪控制[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 36 -48 .
[6] 张伟健, 邴其春, 沈富鑫, 胡嫣然, 高鹏. 城市快速路路段行程时间估计方法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 49 -57 .
[7] 杨秀, 韦笃取. 基于单状态变量的永磁同步电机混沌跟踪控制[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 58 -66 .
[8] 赵媛, 宋树祥, 刘振宇, 岑明灿, 蔡超波, 蒋品群. 一种新型电流镜运算跨导放大器的设计[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 67 -75 .
[9] 王鲁娜, 杜洪波, 朱立军. 基于流形正则的堆叠胶囊自编码器优化算法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 76 -85 .
[10] 赵明, 罗秋莲, 陈蔚萌, 陈嘉妮. 控制时机和力度对传染病传播的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 86 -97 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发