|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (2): 138-146.doi: 10.16088/j.issn.1001-6600.2022040401
苏迎杰1, 王达菲2, 杨文1, 张孟洋3, 侯东睿3, 罗静1, 孙庆功1, 杨豪3, 王剑峰3*
SU Yingjie1, WANG Dafei2, YANG Wen1, ZHANG Mengyang3, HOU Dongrui3, LUO Jing1, SUN Qinggong1, YANG Hao3, WANG Jianfeng3*
摘要: 多功能棉织物(CO)可以进一步扩大棉织物的应用范围。本文利用正己烷和乙酸乙酯作为聚二甲基硅氧烷(PDMS)的共溶剂,并与还原氧化石墨烯(RGO)结合,制备具有抗紫外和超疏水性能的多功能棉织物(PDMS/RGO-CO),并通过改变正己烷和乙酸乙酯混合比例、棉织物浸渍共混液次数、PDMS浓度,探究最佳的制备工艺。结果表明,正己烷和乙酸乙酯体积比为7∶3、棉织物浸渍次数为2次、PDMS为100 g/L时,PDMS/RGO-CO的超疏水能力最好,接触角(CA)达到165.9°,紫外线防护系数(UPF)达到544.46。与此同时,PDMS/RGO-CO还表现出优异的防污性能和油水分离能力。
中图分类号:
[1] LIN D M, ZENG X R, LI H Q, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206. DOI: 10.1016/j.jcis.2018.08.060. [2] ZHU T X, LI S H, HUANG J Y, et al. Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation[J]. Materials & Design, 2017, 134: 342-351. DOI: 10.1016/j.matdes.2017.08.071. [3] SHEN Y, ZHEN L L, HUANG D, et al. Improving anti-UV performances of cotton fabrics via graft modification using a reactive UV-absorber[J]. Cellulose, 2014, 21(5): 3745-3754. DOI: 10.1007/s10570-014-0367-3. [4] FAROUK R, EL-KHARADLY E A, ELWAHY A H M, et al. Synthesis of new reactive dyes containing commercial UV-absorbers with enhanced simultaneous dyeing and anti-UV properties for cotton fabric[J]. Journal of the Indian Chemical Society, 2021, 98(2): 100022. DOI: 10.1016/j.jics.2021.100022. [5] OTHMAN N H, ISMAIL M C, MUSTAPHA M, et al. Graphene-based polymer nanocomposites as barrier coatings for corrosion protection[J]. Progress in Organic Coatings, 2019, 135: 82-99. DOI: 10.1016/j.porgcoat.2019.05.030. [6] ZHOU Y Y, MA Y B, LI X L, et al. Tunable rGO network in polymer coating for enhancing barrier property[J]. Materials Research Bulletin, 2020, 122: 110648. DOI: 10.1016/j.materresbull.2019.110648. [7] WANG Z G, LIU J B, HAO X, et al. Enhanced power density of a supercapacitor by introducing 3D-interfacial graphene[J]. New Journal of Chemistry, 2020, 44(31): 13377-13381. DOI: 10.1039/d0nj02105a. [8] LEE S P, ALI G A M, HEGAZY H H, et al. Optimizing reduced graphene oxide aerogel for a supercapacitor[J]. Energy & Fuels, 2021, 35(5): 4559-4569. DOI: 10.1021/acs.energyfuels.0c04126. [9] BHATTACHARJEE S, MACINTYRE C R, WEN X Y, et al. Nanoparticles incorporated graphene-based durable cotton fabrics[J]. Carbon, 2020, 166: 148-163. DOI: 10.1016/j.carbon.2020.05.029. [10] JOHNSON A P, GANGADHARAPPA H V, PRAMOD K. Graphene nanoribbons: a promising nanomaterial for biomedical applications[J]. Journal of Controlled Release, 2020, 325: 141-162. DOI: 10.1016/j.jconrel.2020.06.034. [11] 毛芳芳,庞锦英,李建鸣,等.Fe3O4/氧化石墨烯复合纳米粒子的制备及其体外毒性评价[J].广西师范大学学报(自然科学版), 2018, 36(1): 112-120. DOI: 10.16088/j.issn.1001-6600.2018.01.016. [12] BIE C B, YU H G, CHENG B, et al. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst[J]. Advanced Materials, 2021, 33(9): e2003521. DOI: 10.1002/adma.202003521. [13] NEELGUND G M, OKI A. ZnO conjugated graphene: an efficient sunlight driven photocatalyst for degradation of organic dyes[J]. Materials Research Bulletin, 2020, 129: 110911. DOI: 10.1016/j.materresbull.2020.110911. [14] BABAAHMADI V, ABUZADE R A, MONTAZER M. Enhanced ultraviolet-protective textiles based on reduced graphene oxide-silver nanocomposites on polyethylene terephthalate using ultrasonic-assisted in-situ thermal synthesis[J]. Journal of Applied Polymer Science, 2022, 139(21): 52196. DOI: 10.1002/app.52196. [15] WANG D, MA J Z, LIU J J, et al. Intumescent flame-retardant and ultraviolet-blocking coating screen-printed on cotton fabric[J]. Cellulose, 2021, 28(4): 2495-2504. DOI: 10.1007/s10570-020-03669-7. [16] 周福芹, 张志斌,杨海峰. 石墨烯改性棉织物的制备及其抗紫外、抗菌性能[J].印染助剂, 2019, 36(11): 16-19. [17] GAO S W, DONG X L, HUANG J Y, et al. Co-solvent induced self-roughness superhydrophobic coatings with self-healing property for versatile oil-water separation[J]. Applied Surface Science, 2018, 459: 512-519. DOI: 10.1016/j.apsusc.2018.08.041. [18] MAHIUDDIN M, OCHIAI B. Lemon juice assisted green synthesis of reduced graphene oxide and its application for adsorption of methylene blue[J]. Technologies, 2021, 9(4): 96. [19] TISSERA N D, WIJESENA R N, PERERA J R, et al. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating[J]. Applied Surface Science, 2015, 324: 455-463. DOI: 10.1016/j.apsusc.2014.10.148. [20] DASHAIRYA L, ROUT M, SAHA P. Reduced graphene oxide-coated cotton as an efficient absorbent in oil-water separation[J]. Advanced Composites and Hybrid Materials, 2018, 1(1): 135-148. DOI: 10.1007/s42114-017-0019-9. [21] GUO F, WEN Q Y, PENG Y B, et al. Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(41): 21866-21874. DOI: 10.1039/c7ta05599d. |
No related articles found! |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |