|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (3): 201-212.doi: 10.16088/j.issn.1001-6600.2024041603
袁鸿1,2, 汪小冬1,2,3, 魏秀英1,2, 王加品1,2, 陈以芳1,2, 姚红艳1,2, 陈敦学1,2*
YUAN Hong1,2, WANG Xiaodong1,2,3, WEI Xiuying1,2, WANG Jiapin1,2, CHEN Yifang1,2, YAO Hongyan1,2, CHEN Dunxue1,2*
摘要: 生物钟在生物体内出现昼夜周期性震荡,影响着生物的生长发育。棘胸蛙Quasipaa spinosa作为一种重要的两栖类动物,蝌蚪期主要在白天活动,而变态后则主要在夜间活动,出现相反的昼夜节律特征。目前关于棘胸蛙Clock基因的昼夜变化特征尚不清楚。因此,本研究克隆棘胸蛙的Clock基因,发现其蛋白序列含有1个HLH结构域、2个PAS结构域和1个PAC结构域,且这些结构域在不同物种中高度保守。进化分析表明,鱼类Clock基因可以分为2个不同的组:Clock A组和Clock B组,两栖类Clock基因不分亚型地聚在一起,其中棘胸蛙与高山倭蛙Clock基因紧密聚在一起。为了探索节律基因在棘胸蛙体内的转录特征,选择5个关键节律基因(Clock、Bmal1、Per2、Cry1和RoRα)研究它们不同发育阶段和不同组织中的表达谱。结果显示:Clock基因在所有组织和所有发育阶段中均存在本底表达,且在变态阶段的表达水平最高。节律表达谱显示Clock和Bmal1基因的表达较为一致,均在夜间观察到表达峰值,Per2和Cry1都在一天开始的时候出现表达高峰。但Per2和Cry1的表达模式具有组织特异性,Cry1基因在T4阶段的肌肉、脑、肝和心脏组织中呈现另一个短暂的表达峰,这可能与夜间褪黑素水平的增加或实验动物的行为模式有关。实验结果有助于深刻理解两栖类动物错综复杂的昼夜节律系统。
中图分类号: S917.4
| [1] IMSLAND A K, HANGSTAD T A, JONASSEN T M, et al. The use of photoperiods to provide year round spawning in lumpfish Cyclopterus lumpus[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2019, 228: 62-70. DOI: 10.1016/j.cbpa.2018.11.004. [2]TAHARA Y, KURODA H, SAITO K, et al. In vivo monitoring of peripheral circadian clocks in the mouse[J]. Current Biology, 2012, 22(11): 1029-1034. DOI: 10.1016/j.cub.2012.04.009. [3]ZHANG E E, KAY S A. Clocks not winding down: unravelling circadian networks[J]. Nature Reviews Molecular Cell Biology, 2010, 11(11): 764-776. DOI: 10.1038/nrm2995. [4]SÁNCHEZ-VÁZQUEZ F J, LÓPEZ-OLMEDA J F, VERA L M, et al. Environmental cycles, melatonin, and circadian control of stress response in fish[J]. Frontiers in Endocrinology, 2019, 10: 279. DOI: 10.3389/fendo.2019.00279. [5]QIN C J, SHAO T. The clock gene clone and its circadian rhythms in Pelteobagrus vachelli[J]. Chinese Journal of Oceanology and Limnology, 2015, 33(3): 597-603. DOI: 10.1007/s00343-015-4167-x. [6]BASS J, TAKAHASHI J S. Circadian integration of metabolism and energetics[J]. Science, 2010, 330(6009): 1349-1354. DOI: 10.1126/science.1195027. [7]DE BUNDEL D, GANGAROSSA G, BIEVER A, et al. Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice[J]. Frontiers in Behavioral Neuroscience, 2013, 7: 152. DOI: 10.3389/fnbeh.2013.00152. [8]ZHANG R, LAHENS N F, BALLANCE H I, et al. A circadian gene expression Atlas in mammals: implications for biology and medicine[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45): 16219-16224. DOI: 10.1073/pnas.1408886111. [9]XU H Y, SHI C, YE Y F, et al. Photoperiod-independent diurnal feeding improved the growth and feed utilization of juvenile rainbow trout (Oncorhynchus mykiss) by inducing food anticipatory activity[J]. Frontiers in Marine Science, 2022, 9: 1029483. DOI: 10.3389/fmars.2022.1029483. [10]GILANNEJAD N, MOYANO F J, MARTÍNEZ-RODRÍGUEZ G, et al. Feeding protocol modulates the digestive process in Senegalese sole (Solea senegalensis) juveniles[J]. Frontiers in Marine Science, 2021, 8: 698403. DOI: 10.3389/fmars.2021.698403. [11]BOLTON C M, BEKAERT M, EILERTSEN M, et al. Rhythmic clock gene expression in Atlantic salmon parr brain[J]. Frontiers in Physiology, 2021, 12: 761109. DOI: 10.3389/fphys.2021.761109. [12]BETANCOR M B, SPRAGUE M, ORTEGA A, et al. Central and peripheral clocks in Atlantic bluefin tuna (Thunnus thynnus L.): daily rhythmicity of hepatic lipid metabolism and digestive genes[J]. Aquaculture, 2020, 523: 735220. DOI: 10.1016/j.aquaculture.2020.735220. [13]ALMAIDA-PAGÁN P F, ORTEGA-SABATER C, LUCAS-SÁNCHEZ A, et al. Impact of a shift work-like lighting schedule on the functioning of the circadian system in the short-lived fish Nothobranchius furzeri[J]. Experimental Gerontology, 2018, 112: 44-53. DOI: 10.1016/j.exger.2018.08.010. [14]WANG X D, XIE Y G, HU W, et al. Transcriptome characterization and SSR discovery in the giant spiny frog Quasipaa spinosa[J]. Gene, 2022, 842: 146793. DOI: 10.1016/j.gene.2022.146793. [15]MARTÍN-ROBLES Á J, WHITMORE D, SÁNCHEZ-VÁZQUEZ F J, et al. Cloning, tissue expression pattern and daily rhythms of Period1, Period2, and Clock transcripts in the flatfish Senegalese sole,Solea senegalensis[J]. Journal of Comparative Physiology B, 2012, 182(5): 673-685. DOI: 10.1007/s00360-012-0653-z. [16]CAVALLARI N, FRIGATO E, VALLONE D, et al. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception[J]. PLoS Biology, 2011, 9(9): e1001142. DOI: 10.1371/journal.pbio.1001142. [17]SANCHEZ R E A, KALUME F, DE LA IGLESIA H O. Sleep timing and the circadian clock in mammals: past, present and the road ahead[J]. Seminars in Cell & Developmental Biology, 2022, 126: 3-14. DOI: 10.1016/j.semcdb.2021.05.034. [18]ZHU H S, LARUE S, WHITELEY A, et al. The Xenopus Clock gene is constitutively expressed in retinal photoreceptors[J]. Molecular Brain Research, 2000, 75(2): 303-308. DOI: 10.1016/S0169-328X(99)00309-5. [19]COWAN M, AZPELETA C, LÓPEZ-OLMEDA J F. Rhythms in the endocrine system of fish: a review[J]. Journal of Comparative Physiology B, 2017, 187(8): 1057-1089. DOI: 10.1007/s00360-017-1094-5. [20]KLEIN S L, STRAUSBERG R L, WAGNER L, et al. Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative[J]. Developmental Dynamics, 2002, 225(4): 384-391. DOI: 10.1002/dvdy.10174. [21]ARISTAKESYAN E A, KARMANOVA I G. Effect of photostimulation on the wakefulness-sleep cycle in the common frog Rana temporaria[J]. Journal of Evolutionary Biochemistry and Physiology, 2007, 43(2): 208-214. DOI: 10.1134/S0022093007020093. [22]CEINOS R M, CHIVITE M, LÓPEZ-PATIÑO M A, et al. Differential circadian and light-driven rhythmicity of clock gene expression and behaviour in the turbot,Scophthalmus maximus[J]. PLoS One, 2019, 14(7): e0219153. DOI: 10.1371/journal.pone.0219153. [23]QIN C J, SUN J X, JUN W, et al. Discovery of differentially expressed genes in the intestines of Pelteobagrus vachellii within a light/dark cycle[J]. Chronobiology International, 2020, 37(3): 339-352. DOI: 10.1080/07420528.2019.1690498. [24]SANCHEZ S E, PETRILLO E, BECKWITH E J, et al. A methyl transferase links the circadian clock to the regulation of alternative splicing[J]. Nature, 2010, 468(7320): 112-116. DOI: 10.1038/nature09470. [25]CHEN S H, QIAO H, FU H T, et al. Molecular cloning, characterization, and temporal expression of the clock genes period and timeless in the oriental river prawn Macrobrachium nipponense during female reproductive development[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2017, 207: 43-51. DOI: 10.1016/j.cbpa.2017.02.011. [26]VELARDE E, HAQUE R, IUVONE P M, et al. Circadian clock genes of goldfish,Carassius auratus: cDNA cloning and rhythmic expression of period and cryptochrome transcripts in retina, liver, and gut[J]. Journal of Biological Rhythms, 2009, 24(2): 104-113. DOI: 10.1177/0748730408329901. [27]KRYLOV V V, IZVEKOV E I, PAVLOVA V V, et al. Circadian rhythms in zebrafish (Danio rerio) behaviour and the sources of their variability[J]. Biological Reviews, 2021, 96(3): 785-797. DOI: 10.1111/brv.12678. [28]NISHIDE S Y, HASHIMOTO K, NISHIO T, et al. Organ-specific development characterizes circadian clock gene Per2 expression in rats[J]. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 2014, 306(1): R67-R74. DOI: 10.1152/ajpregu.00063.2013. [29]凌洁彬.中华大蟾蜍(Bufo bufo gargarigans)繁殖峰期和末期生物钟基因表达和激素水平的节律性改变[D].金华:浙江师范大学,2017. [30]MAZZOCCOLI G, PAZIENZA V, VINCIGUERRA M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms[J]. Chronobiology International, 2012, 29(3): 227-251. DOI: 10.3109/07420528.2012.658127. [31]ALLADA R, WHITE N E, SO W V, et al. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless[J]. Cell, 1998, 93(5): 791-804. DOI: 10.1016/s0092-8674(00)81440-3. [32]ARYAL R P, KWAK P B, TAMAYO A G, et al. Macromolecular assemblies of the mammalian circadian clock[J]. Molecular Cell, 2017, 67(5): 770-782.e6. DOI: 10.1016/j.molcel.2017.07.017. [33]肖锋.中华大蟾蜍(Bufo bufo gargarigans)生物钟基因表达及外周激素水平的昼夜节律研究[D].金华:浙江师范大学,2014. DOI: 10.7666/d.Y2665062. [34]HERRERO M J, LEPESANT J M J. Daily and seasonal expression of clock genes in the pituitary of the European sea bass (Dicentrarchus labrax)[J]. General and Comparative Endocrinology, 2014, 208: 30-38. DOI: 10.1016/j.ygcen.2014.08.002. [35]MAZUR M, MARKOWSKA M, CHADZINSKA M, et al. Changes of the clock gene expression in central and peripheral organs of common carp exposed to constant lighting conditions[J]. Chronobiology International, 2023, 40(2): 145-161. DOI: 10.1080/07420528.2022.2157734. [36]VERA L M, NEGRINI P, ZAGATTI C, et al. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata)[J]. Chronobiology International, 2013, 30(5): 649-661. DOI: 10.3109/07420528.2013.775143. [37]THRAYA M, HAMMOUD M, HEATH D, et al. Testing the expression of circadian clock genes in the tissues of Chinook salmon,Oncorhynchus tshawytscha[J]. Chronobiology International, 2019, 36(8): 1088-1102. DOI: 10.1080/07420528.2019.1614019. [38]BO Y, ZHANG W X, LU J, et al. Rhythmic expressions of biological clocks and metabolic genes in marine medaka (Oryzias melastigma)[J]. Aquaculture Research, 2022, 53(9): 3541-3552. DOI: 10.1111/are.15860. [39]WANG S H, ZHANG T X, HUANG H P, et al. Cloning, tissue distribution, mRNA expression and functional analysis of circadian clock gene per2 from the high-latitude Amur minnow (Phoxinus lagowskii)[J]. Aquaculture International, 2024, 32(3): 2401-2425. DOI: 10.1007/s10499-023-01277-3. [40]WITT-ENDERBY P A, SLATER J P, JOHNSON N A, et al. Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice[J]. Journal of Pineal Research, 2012, 53(4): 374-384. DOI: 10.1111/j.1600-079X.2012.01007.x. [41]WEST A C, IVERSEN M, JØRGENSEN E H, et al. Diversified regulation of circadian clock gene expression following whole genome duplication[J]. PLoS Genetics, 2020, 16(10): e1009097. DOI: 10.1371/journal.pgen.1009097. [42]MISHRA I, KUMARV. Circadian basis of seasonal timing in higher vertebrates[J]. Biological Rhythm Research, 2017, 48(5): 723-738. DOI: 10.1080/09291016.2017.1345447. |
| [1] | 唐天兵, 李继发, 严毅. 多策略改进的猎人猎物优化算法及其应用[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 153-164. |
| [2] | 秦旭东, 孙涛, 何家松, 李松宁, 张小丽, 武正军, 陈泽柠. 鳄蜥日活动起始时间与天亮、日出时间的关系[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 154-160. |
| [3] | 魏朝宇, 汪小冬, 魏秀英, 袁鸿, 姚红艳, 陈敦学. 5个棘胸蛙养殖群体微卫星遗传多样性分析[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 206-214. |
| [4] | 蔡丽坤, 吴运兵, 陈甘霖, 刘翀凌, 廖祥文. 基于生成对抗网络的类别文本生成[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 79-90. |
| [5] | 刘晶洁, 褚武英, 朱鑫, 孙悦, 许艺兰, 谢炎东, 宾石玉, 张建社. 鳜RORα基因的胚胎发育特征及饥饿对其节律性表达影响分析[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 190-197. |
| [6] | 董小燕, 梁秋芳, 冯平. CYP2D亚家族基因在灵长类动物中的药物代谢及进化研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 131-138. |
| [7] | 刘静, 边迅. 直翅目昆虫线粒体基因组的特征及应用[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 17-28. |
| [8] | 杨丹丹, 谢永广, 宾石玉, 罗华辉, 安苗, 陈敦学. 波纹鳜线粒体基因克隆及系统发育信息分析[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 119-126. |
| [9] | 吕攀龙, 翁小雄, 彭新建. 基于差分进化算法SVM的公交通勤乘客识别[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 106-114. |
| [10] | 雷霖, 罗小勇. 一种新的量子进化算法实数编码方式及应用[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 23-27. |
| [11] | 陈尤莺, 郑之, 孔祥增, 张胜元. 基于贝叶斯分类器的结肠癌数据分类[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 187-191. |
| [12] | 廖海波, 万中英, 王明文. 免疫进化的投影寻踪模型在文本分类中的应用[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 123-128. |
| [13] | 谢春芝, 杜亚军. 基于进化论观点的概念格构建算法[J]. 广西师范大学学报(自然科学版), 2010, 28(1): 92-95. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |