广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (3): 131-138.doi: 10.16088/j.issn.1001-6600.2020121604

• • 上一篇    下一篇

CYP2D亚家族基因在灵长类动物中的药物代谢及进化研究

董小燕1,2, 梁秋芳1,2, 冯平1,2*   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006;
    2.广西师范大学 生命科学学院, 广西 桂林 541006
  • 收稿日期:2020-12-16 修回日期:2021-01-30 发布日期:2021-05-13
  • 通讯作者: 冯平(1986—),女,广西北海人,广西师范大学副教授,博士。E-mail: fengfengping1234@163.com
  • 基金资助:
    国家自然科学基金(32060111); 广西自然科学基金(2018GXNSFBA281010); 广西师范大学珍稀濒危动植物生态与环境保护教育部重点实验室基金(GKN.19-A-01-07)

Drug Metabolism and Evolution of CYP2D Subfamily Genes in Primates

DONG Xiaoyan1,2, LIANG Qiufang1,2, FENG Ping1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2020-12-16 Revised:2021-01-30 Published:2021-05-13

摘要: CYP2D亚家族基因普遍存在于灵长类动物中,在药物代谢方面起着重要作用,但不同地域和种族的人的CYP2D酶对同一药物的代谢效果存在差异,非人灵长类动物的CYP2D酶代谢某些药物的效果比人类的更有效。此外,在漫长的进化过程中,灵长类动物CYP2D亚家族基因之间会经历频繁的基因复制或基因丢失,导致CYP2D亚家族基因数目存在差异,但尚未确定这种差异是否与物种的亲缘关系有关。本研究对CYP2D亚家族基因在灵长类动物中的药物代谢和进化研究方面进行综述,以期为实现个体化用药和精准性治疗提供一定的理论依据,并进一步了解CYP2D亚家族基因在灵长类中的进化情况。

关键词: 灵长类动物, CYP2D亚家族基因, 药物代谢, 多态性, 进化

Abstract: CYP2D subfamily genes are commonly found in primates and play an important role in drug metabolism. However, the effect of CYP2D enzyme on the metabolism of the same drug varies in different regions and races, and the CYP2D enzyme in non-human primates metabolizes some drugs more efficiently than that in humans. In addition, during the long evolutionary process, primate CYP2D subfamily genes will experience frequent gene duplication or gene loss, leading to differences in the number of CYP2D subfamily genes, but it has not been determined whether such differences are related to the species’ genetic relationship. In this study, we reviewed the studies on drug metabolism and evolution of CYP2D subfamily genes in primates, in order to provide some theoretical basis for the realization of individualized medication and precise therapy, and further understand the evolution of CYP2D subfamily genes in primates.

Key words: CYP2D subfamily gene, primates, drug metabolism, polymorphism, evolution

中图分类号: 

  • R965
[1]FINNIGAN J D, YOUNG C, COOK D J, et al. Cytochromes P450(P450s): A review of the class system with a focus on prokaryotic P450s[J]. Advances in Protein Chemistry and Structural Biology, 2020, 122: 289-320. DOI:10.1016/bs.apcsb. 2020.06.005.
[2]NELSON D R, KOYMANS L, KAMATAKI T, et al. P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature[J]. Pharmacogenetics, 1996, 6(1): 1-42. DOI:10.1097/00008571-199602000-00002.
[3]KAWASHIMA A, SATTA Y. Substrate-dependent evolution of cytochrome P450: Rapid turnover of the detoxification-type and conservation of the biosynthesis-type[J]. PLoS ONE, 2014, 9(6): e100059. DOI:10.1371/journal.pone.0100059.
[4]STIPP M C, ACCO A. Involvement of cytochrome P450 enzymes in inflammation and cancer: A review[J]. Cancer Chemotherapy and Pharmacology, 2021, 87: 295-309. DOI:10.1007/s00280-020-04181-2.
[5]MARTIGNONI M, GROOTHUIS G M M, RUBEN D K. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction[J]. Expert Opinion on Drug Metabolism & Toxicology, 2006, 2(6): 875-894. DOI:10.1517/17425255.2.6.875.
[6]TAYLOR C, CROSBY I, YIP V, et al. A review of the important role of CYP2D6 in pharmacogenomics[J]. Genes, 2020, 11(11):e1295. DOI:10.3390/genes11111295.
[7]FENG P, LIU Z J. Complex gene expansion of the CYP2D gene subfamily[J]. Ecology and Evolution, 2018, 8(22): 11022-11030. DOI:10.1002/ece3.4568.
[8]ALMEIDA D, MALDONADO E, KHAN I, et al. Whole-genome identification, phylogeny, and evolution of the cytochrome P450 Family 2 (CYP2) subfamilies in birds[J]. Genome Biology and Evolution, 2016, 8(4): 1115-1131. DOI:10.1093/gbe/evw041.
[9]YASUKOCHI Y, SATTA Y. Evolution of the CYP2D gene cluster in humans and four non-human primates[J]. Genes & Genetic Systems, 2011, 86(2): 109-116. DOI:10.1266/ggs.86.109.
[10]冯平. CYP2D亚家族基因在脊椎动物中的研究进展[J]. 生物学通报, 2018, 53(2): 6-8. DOI:10.3969/j.issn.0006-3193. 2018.02.003.
[11]HADUCH A, BROMEK E, WÓJCIKOWSKI J, et al. Melatonin supports CYP2D-mediated serotonin synthesis in the brain[J]. Drug Metabolism and Disposition, 2016, 44(3): 445-452. DOI:10.1124/dmd.115.067413.
[12]芦树军, 宋春雨. CYP2D6基因多态性对曲马多术后镇痛影响的研究进展[J]. 疑难病杂志, 2013,12(2): 163-165. DOI:10.3969/j.issn.1671-6450.2013.02.040.
[13]WEN Q H, ZHANG Z, CAI W K, et al. The associations between CYP2D6*10 C188T polymorphism and pharmacokinetics and clinical outcomes of tramadol: A systematic review and meta-analysis[J]. Pain Medicine, 2020, 21(12): 3679-3690. DOI:10.1093/pm/pnaa140.
[14]LOCATELLI I, KASTELIC M, KOPRIVŠEK J, et al. A population pharmacokinetic evaluation of the influence of CYP2D6 genotype on risperidone metabolism in patients with acute episode of schizophrenia[J]. European Journal of Pharmaceutical Sciences, 2010, 41(2): 289-298. DOI:10.1016/j.ejps.2010.06.016.
[15]BROOKS J D, COMEN E A, REINER A S, et al. CYP2D6 phenotype, tamoxifen, and risk of contralateral breast cancer in the WECARE study[J]. Breast Cancer Research, 2018, 20(1): 149. DOI:10.1186/s13058-018-1083-y.
[16]王玉文, 周国岭, 刘艳, 等. CYP2D6基因多态性与托莫西汀治疗ADHD疗效的关联性研究进展[J]. 中国现代医生, 2018, 56(20): 165-168.
[17]MANKOWSKI D C, LADDISON K J, CHRISTOPHERSON P A, et al. Molecular cloning, expression, and characterization of CYP2D17 from cynomolgus monkey liver[J]. Archives of Biochemistry and Biophysics, 1999, 372(1): 189-196. DOI:10.1006/abbi.1999.1506.
[18]UNO Y, UEHARA S, KOHARA S, et al. Cynomolgus monkey CYP2D44 newly identified in liver, metabolizes bufuralol, and dextromethorphan[J]. Drug Metabolism and Disposition, 2010, 38(9): 1486-1492. DOI:10.1124/dmd.110.033274.
[19]PERELMAN P, JOHNSON W E, ROOS C, et al. A molecular phylogeny of living primates[J]. PLoS Genetics, 2011, 7(3): e1001342. DOI:10.1371/journal.pgen.1001342.
[20]KIMURA S, UMENO M, SKODA R C, et al. The human debrisoquine 4-hydroxylase (CYP2D) locus: Sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene[J]. American Journal of Human Genetics, 1989, 45(6): 889-904.
[21]TWIST G P, GAEDIGK A, MILLER N A, et al. Constellation: a tool for rapid, automated phenotype assignment of a highly polymorphic pharmacogene, CYP2D6, from whole-genome sequences[J]. NPJ Genomic Medicine, 2017, 2(1): 16039. DOI:10.1038/npjgenmed.2015.7.
[22]CHANEY M E, ROMINE M G, PIONTKIVSKA H, et al. Diversifying selection detected in only a minority of xenobiotic-metabolizing CYP1-3 genes among primate species[J]. Xenobiotica, 2020, 50(12): 1406-1412. DOI:10.1080/00498254.2020.1785580.
[23]INGELMAN-SUNDBERG M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): Clinical consequences, evolutionary aspects and functional diversity[J]. Pharmacogenomics Journal, 2005, 5(1): 6-13. DOI:10.1038/sj.tpj.6500285.
[24]EBISAWA A, HIRATSUKA M, SAKUYAMA K, et al. Two novel single nucleotide polymorphisms (SNPs) of the CYP2D6 gene in Japanese individuals[J]. Drug Metabolism and Pharmacokinetics, 2005, 20(4): 294-299. DOI:10.2133/dmpk.20.294.
[25]TOSCANO C, KLEIN K, BLIEVERNICHT J, et al. Impaired expression of CYP2D6 in intermediate metabolizers carrying the*41 allele caused by the intronic SNP 2988G>A: evidence for modulation of splicing events[J]. Pharmacogenetics and Genomics, 2006, 16(10): 755-766. DOI:10.1097/01.fpc.0000230112.96086.e0.
[26]SAKUYAMA K, SASAKI T, UJIIE S, et al. Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47-51, 53-55, and 57)[J]. Drug Metabolism and Disposition, 2008, 36(12): 2460-2467. DOI:10.1124/dmd.108.023242.
[27]BRADFORD D L. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants[J]. Pharmacogenomics, 2002, 3(2): 229-243. DOI:10.1517/14622416.3.2.229.
[28]LIAU Y L, MAGGO S, MILLER A L, et al. Nanopore sequencing of the pharmacogene CYP2D6 allows simultaneous haplotyping and detection of duplications[J]. Pharmacogenomics, 2019, 20(14): 1033-1047. DOI:10.2217/pgs-2019-0080.
[29]RAIMUNDO S, TOSCANO C, KLEIN K, et al. A novel intronic mutation, 2988G>A, with high predictivity for impaired dunction of cytochrome P450 2D6 in white subjects[J]. Clinical Pharmacology & Therapeutics, 2004, 76(2): 128-138. DOI:10.1016/j.clpt.2004.04.009.
[30]金灵. 依据喹硫平个体化药物代谢信息进行临床治疗的研究[D]. 陕西: 西安医学院, 2018.
[31]马昕驰,张娜. CYP2D6基因型多态性及其对他莫昔芬治疗的影响研究进展[J]. 肿瘤学杂志, 2020, 26(6): 528-533.
[32]BATISTAKI C, CHRONA E, KOSTROGLOU A, et al. CYP2D6 basic genotyping of patients with chronic pain receiving tramadol or codeine: A study in a greek cohort[J]. Pain Medicine, 2020, 21(11): 3199-32042. DOI:10.1093/pm/pnaa122.
[33]曾雷, 元静, 卫芋君, 等. CYP2D6基因多态性与分裂症易感性及利培酮治疗反应的研究进展[J]. 国际精神病学杂志, 2018, 45(1): 18-21.
[34]黄艳, 刘锦平. CYP2D6基因多态性与他莫昔芬代谢及疗效的相关性研究进展[J]. 实用医院临床杂志, 2015, 12(3): 170-173.
[35]ANSTENSRUD K A, MOLDEN E, HAUG H J, et al. Impact of genotype-predicted CYP2D6 metabolism on clinical effects and tolerability of metoprolol in patients after myocardial infarction-a prospective observational study[J]. European Journal of Clinical Pharmacology, 2020, 76(1): 673-683. DOI:10.1007/s00228-020-02832-0.
[36]胡焱垚, 王爽, 杨军, 等. CYP2D6、CYP3A5的基因多态性与心血管药物代谢的临床研究进展[J]. 现代养生, 2019(24): 63-64.
[37]SENDA C, YAMAURA Y, KOBAYASHI K, et al. Influence of the CYP2D6*10 allele on the metabolism of mexiletine by human liver microsomes[J]. British Journal of Clinical Pharmacology, 2015, 52(1): 100-103. DOI:10.1046/j.0306-5251.2001.01411.x.
[38]张泓波, 李宝群, 王瑞婷, 等. 细胞色素氧化酶CYP2D6的研究进展[J]. 承德医学院学报, 2005, 22(1): 72-74. DOI:10.15921/j.cnki.cyxb.2005.01.037.
[39]BANK P C D, SWEN J J, GUCHELAAR H J. Estimated nationwide impact of implementing a preemptive pharmacogenetic panel approach to guide drug prescribing in primary care in The Netherlands[J]. BMC Medicine, 2019, 17: 110. DOI:10.1186/s12916-019-1342-5.
[40]杨丽蓉, 刘天龙, 刘小雷. CYP2D6*10等位基因多态性对文拉法辛血药浓度的影响[J]. 中南药学, 2013, 11(1): 23-27.
[41]杨帆, 仝利俊, 马睿婷. CYP2D6基因多态性对个体用药影响的研究进展[J]. 世界最新医学信息文摘, 2018, 18(92): 32-34. DOI:10.19613/j.cnki.1671-3141.2018.92.014.
[42]COLBURN D E, GILES F J, OLADOVICH D, et al. In vitro evaluation of cytochrome P450-mediated drug interactions between cytarabine, idarubicin, itraconazole and caspofungin[J]. Hematology, 2004, 9(3): 217-221. DOI:10.1080/10245330410001701585.
[43]ABDULJALIL K, FRANK D, GAEDIGK A, et al. Assessment of activity levels for CYP2D6*1, CYP2D6*2, and CYP2D6*41 genes by population pharmacokinetics of dextromethorphan[J]. Clinical Pharmacology & Therapeutics, 2010, 88(5): 643-651. DOI:10.1038/clpt.2010.137.
[44]BOYLE K L, ROSENBAUM C D. Oxycodone overdose in the pediatric population: case files of the University of Massachusetts Medical Toxicology Fellowship[J]. Journal of Medical Toxicology, 2014, 10(3): 280-285. DOI:10.1007/s13181-014-0394-3.
[45]COOKE B R, ANNIE B S W, RICHARD C Z, et al. Debrisoquine metabolism and CYP2D expression in marmoset liver microsomes[J]. Drug Metabolism and Disposition, 2012, 40(1):70-75. DOI:10.1124/dmd.111.041566.
[46]YASUKOCHI Y, SATTA Y. Molecular evolution of the CYP2D subfamily in primates: purifying selection on substrate recognition sites without the frequent or long-tract gene conversion[J]. Genome Biology and Evolution, 2015, 7(4): 1053-1067. DOI:10.1093/gbe/evv056.
[47]GAEDIGK A. Complexities of CYP2D6 gene analysis and interpretation[J]. International Review of Psychiatry, 2013, 25(5): 534-553. DOI:10.3109/09540261.2013.825581.
[48]DLUGAUSKAS E, LENGVENYTE A, STRUMILA R, et al. Poor CYP2D6 and ultrarapid CYP2C19 metabolizer: Clinical challenge in psychiatric treatment[J]. European Psychiatry, 2017, 41(S1): S163. DOI:10.1016/j.eurpsy.2017.01.2042.
[49]RAVINDRANATH V, KOMMADDI R P, PAI H V. Unique cytochromes P450 in human brain: implication in disease pathogenesis[J]. Journal of Neural Transmission, 2006, 70(Sup): 167-171. DOI:10.1007/978-3-211-45295-0_26.
[50]张咏莉, 崔玉强, 汪向升, 等. 黄芪颗粒和黄芪注射液对CYP1A2、CYP2D、CYP2C亚酶活性影响的实验研究[J]. 中国药理学通报, 2013, 29(4): 512-519.
[1] 刘静, 边迅. 直翅目昆虫线粒体基因组的特征及应用[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 17-28.
[2] 许艺兰, 钟丹丹, 杜雪松, 谢炎东, 刘晶洁, 孙悦, 宾石玉. 吉富罗非鱼TCP-1-eta基因多态性及其与耐寒性状的相关性分析[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 112-117.
[3] 杨丹丹, 谢永广, 宾石玉, 罗华辉, 安苗, 陈敦学. 波纹鳜线粒体基因克隆及系统发育信息分析[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 119-126.
[4] 吕攀龙, 翁小雄, 彭新建. 基于差分进化算法SVM的公交通勤乘客识别[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 106-114.
[5] 宾石玉, 钟丹丹, 杜雪松, 张永德, 林勇, 黄姻, 文露婷. 吉富罗非鱼HSP70基因的多态性及其与耐寒性状的相关性研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 211-217.
[6] 雷霖, 罗小勇. 一种新的量子进化算法实数编码方式及应用[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 23-27.
[7] 廖海波, 万中英, 王明文. 免疫进化的投影寻踪模型在文本分类中的应用[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 123-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 覃盈盈, 漆光超, 梁士楚. 凤眼莲组织浸提液对靖西海菜花种子萌发的影响[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 87 -92 .
[2] 林永生, 裴建国, 邹胜章, 杜毓超, 卢丽. 清江下游红层岩溶及其水化学特征[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 113 -120 .
[3] 万雷,罗玉玲,黄星月. 脉冲神经网络硬件系统性能监测平台[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 9 -16 .
[4] 林越,刘廷章,陈一凡,金勇,梁立新. 基于AP-HMM混合模型的充电桩故障诊断[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 25 -33 .
[5] 夏海英,刘伟涛,朱勇建. 一种改进的快速SUSAN棋盘格角点检测算法[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 44 -52 .
[6] 孟齐,沈洪涛,毛立强,梁维刚,赵子珍,梁钊燕,赖鸣凤,黄保健,李世琢,何明,姜山. 用加速器质谱技术测定广西乐业天坑的暴露年龄[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 16 -20 .
[7] 叶菊,孙立卿,吉守祥. 响应面法优化蓝花荆芥中总黄酮提取工艺[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 62 -68 .
[8] 葛丽娜. 基于k-同构和局部随机化的隐私保护方法[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 1 -8 .
[9] 唐振军. 基于PCA特征距离的图像哈希算法[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 9 -18 .
[10] 张芳. 艾比湖地区生态景观格局空间演变分析[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 156 -164 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发