广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (2): 71-80.doi: 10.16088/j.issn.1001-6600.2021060803

• • 上一篇    下一篇

基于动量因子DD-LMS算法在高速相干接收机中的应用

龚闯1, 刘志强1,2, 陆叶1, 周鹏1, 武康康1, 李传起1,3*   

  1. 1.广西师范大学 电子工程学院, 广西 桂林 541004;
    2.中国电子科技集团公司 第三十四研究所, 广西 桂林 541004;
    3.南宁师范大学 物理与电子学院, 广西 南宁 530001
  • 收稿日期:2021-06-08 修回日期:2021-07-10 发布日期:2022-05-31
  • 通讯作者: 李传起(1964—),男,安徽六安人,南宁师范大学教授,博士。E-mail:lcq@mailbox.gxnu.edu.cn
  • 基金资助:
    广西科技计划项目重点研发计划课题(桂AB17292082)

Application of Momentum Factor DD-LMS Algorithm in High Speed Coherent Receiver

GONG Chuang1, LIU Zhiqiang1,2, LU Ye1, ZHOU Peng1, WU Kangkang1, LI Chuanqi1,3*   

  1. 1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. The No. 34 Research Institute of CETC, Guilin Guangxi 541004, China;
    3. College of Physics and Electronic, Nanning Normal University, Nanning Guangxi 530001, China
  • Received:2021-06-08 Revised:2021-07-10 Published:2022-05-31

摘要: 光纤中的色散是引起传输信号码间串扰(ISI)的直接原因,传统的用于均衡ISI的自适应盲均衡算法收敛速度慢、误差大,不适用于高速相干接收机。为解决该问题,本文引入动量因子,改进基于判决引导的最小均方(DD-LMS)算法用于优化光纤信道色散影响,理论推导并论证动量因子对盲均衡算法的收敛性能及误差函数的影响,同时探究不同函数的动量因子对算法的优化性能。本文在OptiSystem光仿真软件上搭建单载波传输速率224 Gib/s相干光传输系统。结果表明,相较于传统时域均衡器(TDE),在其后端添加此自适应滤波器,系统平均误码率能下降约2.5 dB。在光信噪比为15 dB、传输距离为500~1 000 km的情况下,色散补偿模块误码率能稳定在10-2左右,在色散信道中具有较强鲁棒性。

关键词: 相干光接收机, 色散补偿, 盲均衡, DD-LMS算法, 动量因子

Abstract: The chromatic dispersion in the optical fiber is the direct cause of the inter-symbol interference (ISI) of the transmission signal, and the signal degradation is particularly serious when the transmission environment fluctuates. Traditional adaptive blind equalization algorithms have slow convergence speed and large errors, which are not suitable for high-speed coherent receivers. In order to solve this problem, the momentum factor is introduced to improve the decision-directed least means square (DD-LMS) algorithm to optimize the effect of fiber channel dispersion. Theoretically, the momentum factor is derived and demonstrated on the convergence performance and error function of the blind equalization algorithm. At the same time, the momentum factor of different functions is explored on the optimization performance of the algorithm.A coherent optical transmission system with a single carrier transmission rate of 224 Gib/s is built on the OptiSystem optical simulation software. The results show that, compared with the traditional time domain equalizer (TDE ), adding this adaptive filter at the back end of the system can reduce the average bit error rate of the system by about 2.5 dB. When the optical signal-to-noise ratio is 15 dB and the transmission distance is 500-1 000 km, the error rate of the dispersion compensation module can be stabilized at about 10-2, and it has strong robustness in the dispersion channel.

Key words: coherent optical receiver, dispersion compensation, blind equalization, DD-LMS algorithm, momentum factor

中图分类号: 

  • TN929.1
[1] KUDO R, KOBAYASHI T, ISHIHARA K, et al. Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems[J]. Journal of Lightwave Technology, 2009, 27(16): 3721-3728. DOI: 10.1109/JLT.2009.2024091.
[2] 阮秀凯, 蒋啸, 李昌. 一种适用于高阶QAM系统Bussgang类盲均衡新方法[J]. 电子与信息学报, 2012, 34(8): 2018-2022.
[3] 钟昆, 杨怀栋. 超高速PM-QPSK相干光通信系统恒模算法解调性能分析[J]. 光通信技术, 2019, 43(4): 1-7.
[4] 吴晓杰. 高阶QAM信号解调并行均衡低复杂度算法研究与实现[D]. 成都: 电子科技大学, 2020.
[5] DONG Y, WANG L Q, ZHANG Z G, et al. Parallel and pipelined CMA for high-speed and real-time optical coherent receivers[C]// 2019 18th International Conference on Optical Communications and Networks (ICOCN). Piscataway, NJ: IEEE, 2019. DOI: 10.1109/ICOCN.2019.8934049.
[6] KAMRAN R, THAKER N B, ANGHAN M, et al. Demonstration of a polarization diversity based SH-QPSK system with CMA-DFE equalizer[C]// 2017 26th Wireless and Optical Communication Conference (WOCC). Piscataway, NJ: IEEE, 2017. DOI: 10.1109/WOCC.2017.7928980.
[7] 张天骐, 范聪聪, 葛宛营, 等. 基于ICA和特征提取的MIMO信号调制识别算法[J]. 电子与信息学报, 2020, 42(9): 2208-2215.
[8] KYONO T, OTSUKA Y, FUKUMOTO Y, et al. Computational-complexity comparison of artificial neural network and Volterra series transfer function for optical nonlinearity compensation with time-and frequency-domain dispersion equalization[C]// 2018 European Conference on Optical Communication (ECOC). Piscataway, NJ: IEEE, 2018. DOI: 10.1109/ECOC.2018.8535153.
[9] RANZINI S M, ROS F D, ZIBAR D. Joint low-complexity opto-electronic chromatic dispersion compensation for short-reach transmission[C]// 2019 IEEE Photonics Conference (IPC). Piscataway, NJ: IEEE, 2019. DOI: 10.1109/IPCon.2019.8908278.
[10] 李晓记, 杜卫海, 李燕龙, 等. 基于SVM的水下LED可见光通信信号检测方法[J]. 光通信技术, 2021, 45(5): 50-54. DOI: 10.13921/j.cnki.issn1002-5561.2021.05.011.
[11] 迟楠, 牛文清, 贾俊连, 等. 基于抗非线性SVM的几何整形可见光通信系统[J]. 应用科学学报, 2020, 38(4): 647-658.
[12] CHEN G Y, SUN L, XU K, et al. Machine learning of SVM classification utilizing complete binary tree structure for PAM-4/8 optical interconnection[C]// 2017 IEEE Optical Interconnects Conference (OI). Piscataway, NJ: IEEE, 2017: 47-48, DOI: 10.1109/OIC.2017.7965524.
[13] 吴曦. 基于深度学习的可见光通信系统中信道估计与信道非线性研究[D]. 北京: 北京邮电大学, 2020. DOI: 10.26969/d.cnki.gbydu.2020.002724.
[14] SAVORY S J. Digital filters for coherent optical receivers[J]. Optics Express, 2008, 16 (2): 804-817. DOI: 10.1364/OE.16.000804.
[15] KHAFAJI M, GUSTAT H, ELLINGER F, et al. General time-domain represention of chromatic dispersion in single-mode fibers[J]. IEEE Photonics Technology Letters, 2010, 22(5): 314-316. DOI: 10.1109/LPT.2009.2038355.
[16] ZHOU Z, TANG Z X. Quantitatively predicting third harmonic generation for Gaussian pulses propagating in Kerr nonlinear media[C]// 2017 4th International Conference on Information Science and Control Engineering (ICISCE). Piscataway, NJ: IEEE, 2017: 1608-1611. DOI: 10.1109/ICISCE.2017.335.
[17] 王瑜浩. 少模光纤传输系统的非线性补偿与再生技术研究[D]. 成都: 电子科技大学, 2020. DOI: 10.27005/d.cnki.gdzku.2020.002137.
[18] XU J, ZHENG Y, SUN X H. Analysis for transmission performance of ultra-long haul optical fiber link considering quintic nonlinear effect[C]// 2017 16th International Conference on Optical Communications and Networks (ICOCN). Piscataway, NJ: IEEE, 2017. DOI: 10.1109/ICOCN.2017.8121484.
[19] 梅艳, 张跃进, 展爱云. 基于FEC的LDPC编码在远距离光通信系统中的研究[J]. 光通信技术, 2012, 36(8): 32-34. DOI: 10.13921/j.cnki.issn1002-5561.2012.08.011.
[20] 叶文伟. 光通信系统中一种新颖FEC码的仿真分析[J]. 半导体光电, 2012, 33(4): 561-565. DOI: 10.16818/j.issn1001-5868.2012.04.027.
[21] 覃江毅. 前向纠错编码类型盲识别关键技术研究[D]. 长沙: 国防科技大学, 2018. DOI: 10.27052/d.cnki.gzjgu.2018.000026.
[22] LIGA G, CHEN B, VAN DER HEIDE S, et al. 30% reach increase via low-complexity hybrid HD/SD FEC and improved 4D modulation[J]. IEEE Photonics Technology Letters, 2020, 32(13): 827-830. DOI: 10.1109/LPT.2020.2995636.
[1] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9-20.
[2] 张秀容, 李传起, 陆叶, 张东闯, 孔一卜, 付学谦, 范庆斌. SAC-OCDMA系统中二维地址码设计及性能研究[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[2] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9 -20 .
[3] 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21 -33 .
[4] 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34 -46 .
[5] 王金艳, 胡春, 高健. 一种面向知识编译的OBDD构造方法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 47 -54 .
[6] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55 -67 .
[7] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68 -78 .
[8] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79 -92 .
[9] 赵红涛, 刘志伟. λ重完全二部3-一致超图λK(3)n,n分解为超图双三角锥[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 93 -98 .
[10] 李梦, 曹庆先 , 胡宝清. 1960—2018年广西大陆海岸线时空变迁分析[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 99 -108 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发