广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (2): 58-70.doi: 10.16088/j.issn.1001-6600.2021061505

• • 上一篇    下一篇

低功耗高精度Sigma-Delta调制器的建模与设计

刘振宇, 宋树祥*, 岑明灿, 蒋品群, 蔡超波   

  1. 广西师范大学 电子工程学院,广西 桂林 541004
  • 收稿日期:2021-06-15 修回日期:2021-07-02 发布日期:2022-05-31
  • 通讯作者: 宋树祥(1970—),男,湖南衡阳人,广西师范大学教授,博导。E-mail:songshuxiang@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(62061005);广西研究生教育创新计划项目(YCSW2021070);广西高校中青年教师科研基础能力提升项目(2020KY02028)

Modeling and Design of Low Power and High Precision Sigma-Delta Modulator

LIU Zhenyu, SONG Shuxiang*, CEN Mingcan, JIANG Pinqun, CAI Chaobo   

  1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2021-06-15 Revised:2021-07-02 Published:2022-05-31

摘要: 为提升Sigma-Delta调制器精度的同时降低其功耗,本文设计一款改进型二阶单环CIFF结构Sigma-Delta调制器,通过采用运放共享技术降低由噪声整形滤波器个数引入的额外功耗;提出浮动系数迭代思想应用于调制器在MATLAB下的建模,最终确定满足精度需求的各项参数具体值,通过引入非理想因素对所得参数仿真验证满足最低性能指标后进行晶体管级电路设计。该调制器信号带宽为8 kHz,采样频率为4 MHz。电路设计使用UMC 0.11 μm CMOS工艺,核心电路版图尺寸为226.8 μm×187.44 μm,后端仿真结果表明,当电源电压为1.2 V时,调制器总功耗为290 μW。在-40~125 ℃,各工艺角的有效位数(ENOB)大于等于 15 bits。

关键词: Sigma-Delta调制器, 浮动系数, MATLAB建模, 低功耗, 高精度, 语音芯片

Abstract: In order to improve the accuracy of the Sigma-Delta modulator and reduce its power consumption, an improved second-order single-loop CIFF Sigma-Delta modulator is designed. The additional power consumption caused by the number of noise shaping filters is reduced by using op-amp sharing technology. The idea of floating coefficient iteration is applied to the modeling of the modulator in MATLAB, and the specific values of various parameters that meet the precision requirements are finally determined. Through the introduction of non-ideal factors, the obtained parameters are simulated and verified to meet the minimum performance index, and then the transistor level circuit is designed. The modulator has a signal bandwidth of 8 kHz and a sampling frequency of 4 MHz. The circuit design uses UMC 0.11 μm CMOS process, and the core circuit layout size is 226.8 μm×187.44 μm. The post-simulation results show that when the power supply voltage is 1.2 V, the total power consumption of the modulator is 290 μW. At -40-125 ℃, and the effective bits of each process Angle is more than 15 bits.

Key words: sigma-delta modulator, floating coefficient, matlab modeling, low power consumption, high-precision, voice chip

中图分类号: 

  • TN761
[1] 王盟皓, 侯训平, 陆铁军. 基于Matlab的宽带连续时间Sigma-Delta调制器设计[J]. 微电子学与计算机, 2020, 37(6): 70-74. DOI: 10.19304/j.cnki.issn1000-7180.2020.06.014.
[2] 王福强. 连续时间带通Sigma-Delta调制器的设计方法及实现技术研究[D]. 沈阳: 沈阳工业大学, 2020. DOI: 10.27322/d.cnki.gsgyu.2020.000623.
[3] BONIZZONI E, PEREZ A P, MALOBERTI F, et al. Two op-amps third-order sigma-delta modulator with 61-dB SNDR, 6-MHz bandwidth and 6-mW power consumption[J]. Analog Integrated Circuits and Signal Processing, 2011, 66(3): 381-388. DOI: 10.1007/s10470-010-9538-9.
[4] KWON C K, KIM H, PARK J, et al. A 0.4-mW, 4.7-ps resolution single-loop ΔΣ TDC using a half-delay time integrator[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(3): 1184-1188. DOI: 10.1109/TVLSI. 2015. 2438851.
[5] 周志兴, 来强涛, 姜宇, 等. 一种应用于角度传感器的Sigma Delta ADC设计[J]. 微电子学与计算机, 2019, 36(8): 25-29. DOI: 10.19304/j.cnki.issn1000-7180.2019.08.006.
[6] SUNG G M, LEE C T, XIAO X, et al. 4th-order switched-current multistage-noise-shaping delta-sigma modulator with a simplified digital noise-cancellation circuit[J]. IEEE Access, 2020, 8: 168589-168600. DOI: 10.1109/ACCESS.2020.3023416.
[7] SUNG G M, GUNNAM L C, LIN W S, et al. A third-order multibit switched-current delta-sigma modulator with switched-capacitor flash ADC and IDWA[J]. IEICE Transactions on Electronics, 2017, E100.C(8): 684-693. DOI: 10.1587/transele.E100.C.684.
[8] LI D, QIAN X J, LI R Z, et al. High resolution ADC for ultrasound color doppler imaging based on MASH sigma-delta modulator[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(5): 1438-1449. DOI: 10.1109/TBME.2019.2938275.
[9] SCHREIER R, PAVAN S, TEMES G C. Understanding delta-sigma data converters [M]. 2nd ed. New York: IEEE, 2017. DOI: 10.1002/9781119258308.
[10] CHAO K C H, NADEEM S, LEE W L, et al. A higher order topology for interpolative modulators for oversampling A/D converters[J]. IEEE Transactions on Circuits and Systems, 1990, 37(3): 309-318. DOI: 10.1109/31.52724.
[11] SAFI-HARB M, ROBERTS G W. Low power delta-sigma modulator for ADSL applications in a low-voltage CMOS technology[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(10): 2075-2089. DOI: 10.1109/TCSI.2005.852925.
[12] 王彬, 何光旭, 肖姿逸, 等. 一种高精度单环高阶Σ-Δ调制器[J]. 微电子学, 2017, 47(5): 644-647. DOI: 10.13911/j.cnki.1004-3365.2017.05.012.
[13] 李俊宏. 基于动态误差消除技术的Sigma-Delta调制器的研究与设计[D]. 成都: 西南交通大学, 2019. DOI: 10.27414/d.cnki.gxnju.2019.000724.
[14] 胡云. 用于医疗电子的24位Sigma-delta调制器的研究与设计[D]. 西安: 西安电子科技大学, 2020. DOI: 10.27389/d.cnki.gxadu.2020.003237.
[15] NDJOUNTCHE T. Delta-sigma data converters[M]. Boca Raton: CRC Press, 2011. DOI: 10.1201/b10943-12.
[16] SCHREIER R, SILVA J, STEENSGAARD J, et al. Design-oriented estimation of thermal noise in switched-capacitor circuits[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(11): 2358-2368. DOI: 10.1109/TCSI.2005.853909.
[17] LEE I, KIM B, LEE B G. A low-power incremental delta-sigma ADC for CMOS image sensors[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63(4): 371-375. DOI: 10.1109/TCSII.2015.2503706.
[18] FREITAS L M C, MORGADO-DIAS F. Reference power supply connection scheme for low-power CMOS image sensors based on incremental sigma-delta converters[J]. Electronics, 2021, 10(3): 299. DOI: 10.3390/electronics10030299.
[19] 谭晓强. 低功耗分时复用Delta-Sigma调制器[D]. 长沙: 国防科学技术大学, 2010.
[20] BANU M, KHOURY J M, TSIVIDIS Y. Fully differential operational amplifiers with accurate output balancing[J]. IEEE Journal of Solid-State Circuits, 1988, 23(6): 1410-1414. DOI: 10.1109/4.90039.
[21] BULT K, GEELEN G J G M. A fast-settling CMOS op amp for SC circuits with 90-dB DC gain[J]. IEEE Journal of Solid-State Circuits, 1990, 25(6): 1379-1384. DOI: 10.1109/4.62165.
[22] 周述, 蒋品群, 宋树祥. 2.8~8.5 GHz全集成高增益低功耗超宽带低噪声放大器设计[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 9-16. DOI: 10.16088/j.issn.1001-6600.2017.02.002.
[23] PATHAN A, MEMON T D. Sigma-delta modulation based single-bit adaptive DSP algorithms for efficient mobile communication[J]. Circuits, Systems, and Signal Processing, 2021, 40(4): 1788-1801. DOI: 10.1007/s00034-020-01553-0.
[24] 袁云, 李福杰, 赵野, 等. 一种可集成于电池组检测芯片的Sigma-Delta A/D转换器[J]. 微电子学与计算机, 2014, 31(11): 143-147. DOI: 10.19304/j.cnki.issn1000-7180.2014.11.031.
[1] 周述, 蒋品群, 宋树祥. 2.8~8.5 GHz 全集成高增益低功耗超宽带低噪声放大器设计[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 9-16.
[2] 蔡超波, 凡东东, 宋树祥, 岑明灿. 一款带POR的可校正低功耗电压基准源[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[2] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9 -20 .
[3] 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21 -33 .
[4] 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34 -46 .
[5] 王金艳, 胡春, 高健. 一种面向知识编译的OBDD构造方法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 47 -54 .
[6] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55 -67 .
[7] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68 -78 .
[8] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79 -92 .
[9] 赵红涛, 刘志伟. λ重完全二部3-一致超图λK(3)n,n分解为超图双三角锥[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 93 -98 .
[10] 李梦, 曹庆先 , 胡宝清. 1960—2018年广西大陆海岸线时空变迁分析[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 99 -108 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发