广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (6): 174-182.doi: 10.16088/j.issn.1001-6600.2021010601

• 研究论文 • 上一篇    下一篇

北亚热带山地不同海拔土壤有机碳分布特征——以鄂东龟峰山为例

曹新光1,2*, 岳伟鹏1,3, 邓洁1   

  1. 1.黄冈师范学院 地理与旅游学院, 湖北 黄冈 438000;
    2.福建师范大学 地理科学学院, 福建 福州 350007;
    3.云南大学 国际河流与生态安全研究院, 云南 昆明 650500
  • 收稿日期:2021-01-06 修回日期:2021-03-19 出版日期:2021-11-25 发布日期:2021-12-08
  • 通讯作者: 曹新光(1986—), 男, 山东滨州人, 黄冈师范学院讲师, 福建师范大学博士研究生。E-mail: caoxinguang@163.com
  • 基金资助:
    国家自然科学基金(41804068); 湖北省教育厅科学研究计划指导性项目(B2020164); 黄冈师范学院高级别培育项目(2018); 湖北省大学生创新创业训练计划项目(201610514014, S202010514015); 黄冈师范学院地理过程实验室开放项目(DL202005)

Soil Organic Carbon Distribution Characteristics along an Altitudinal Gradient in the Northern Subtropical Region: A Case Study in Guifeng Mountains of Eastern Hubei, China

CAO Xinguang1,2*, YUE Weipeng2,3, DENG Jie1   

  1. 1. College of Geography and Tourism, Huanggang Normal University, Huanggang Hubei 438000, China;
    2. School of Geographical Sciences, Fujian Normal University, Fuzhou Fujian 350007, China;
    3. Institute of International Rivers and Eco-security, Yunnan University, Kunming Yunnan 650500, China
  • Received:2021-01-06 Revised:2021-03-19 Online:2021-11-25 Published:2021-12-08

摘要: 气候变暖背景下研究气候过渡区森林土壤有机碳沿海拔梯度的分布格局,是土壤碳库时空动态变化研究的重要内容。为研究北亚热带—暖温带气候过渡区典型森林土壤有机碳分布特征,以100 m为高差在鄂东龟峰山南、北坡5个不同海拔高度设置10个采样点,以[0,20)、[20,30)、[30,40)和[40,50)(单位cm)深度分层采集土样,测定土壤有机碳含量和土壤理化性质,研究有机碳分布特征及其影响因素。结果表明:1)龟峰山南、北坡表层土壤有机碳含量和有机碳密度均随海拔升高而显著增加(P<0.01);2)土壤有机碳沿土层深度的增加而下降,但不同海拔土壤有机碳随土层深度下降的幅度不同;3)相关分析表明土壤有机碳含量与土壤容重、石砾含量存在极显著相关关系。本研究对评估北亚热带山地土壤有机碳储量及变化特征具有重要的参考价值。

关键词: 龟峰山, 北亚热带, 土壤有机碳, 海拔梯度

Abstract: To study the spatial and temporal dynamics of soil carbon pool is one of the important parts of the research on the distribution pattern of forest soil organic carbon along the altitude gradient in the climate transition zone. In order to study the distribution characteristics of typical forest soil organic carbon in the northern subtropical and warm-temperate climate transition zone, 10 sampling points were set up at five different altitudes on the south and north slopes of Guifeng Mountain in easternHubei province with a height difference of 100 meters. Soil samples were collected stratified[0,20)、[20,30)、[30,40) and [40,50)(cm) to measure SOC content and soil physical and chemical properties, and to study the distribution characteristics and influencing factors of SOC. The results indicated that: (1) the surface soil organic carbon content and organic carbon density showed a strong regularity along the altitude gradient, that is, the soil organic carbon content and organic carbon density increased significantly with the elevation (P< 0.01). (2) SOC decreased with the increase of soil depth, but the decreasing amplitude of SOC was different at different soil depth at different altitudes. (3) Correlation analysis showed that there was a significant correlation between soil organic carbon content and soil bulk density and gravel content. The study has an important reference value for the evaluation of soil organic carbon storage and its change characteristics in the northern subtropical mountainous region.

Key words: Guifeng Mountain, northern subtropical region, organic carbon, altitude

中图分类号: 

  • S714.2
[1] 秦大河. 气候变化科学与人类可持续发展[J]. 地理科学进展, 2014, 33(7): 874-883. DOI:10.11820/dlkxjz.2014.07.002.
[2] STOCKER T F, QIN D H, PLATTNER GK, et al. IPCC, Climate change 2013: the physical science basis.Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2013.
[3] 周晓宇, 张称意, 郭广芬. 气候变化对森林土壤有机碳贮藏影响的研究进展[J]. 应用生态学报, 2010,21(7):1867-1874.
[4] MELILLO J M, FREY S D, DEANGELIS K M, et al.Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world[J].Science, 2017, 358: 101-105. DOI:10.1126/science.aan2874.
[5] WIESMEIER M, URBANSKI L, HOBLEY E, et al. Soil organic carbon storage as a key function of soils: a review of drivers and indicators at various scales[J]. Geoderma, 2019, 333: 149-162. DOI:10.1016/j.geoderma.2018.07.026.
[6] 张萌萌, 刘梦云, 常庆瑞, 等. 陕西黄土台塬近三十年耕地动态变化的表层土壤有机碳效应[J]. 生态学报,2019, 39(18): 6785-6793. DOI:10.5846/stxb201805251151.
[7] JONES C, MCCONNELL C, COLEMAN K, et al. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil[J]. Global Change Biology, 2005, 11(1): 154-166. DOI:10.1111/j.1365-2486.2004.00885.x.
[8] 丛高,张志丹,张晋京,等.长白山不同林型土壤有机碳特征[J]. 水土保持学报,2019,33(3):179-184,191. DOI:10.13870/j.cnki.stbcxb.2019.03.027.
[9] 董星丰,陈强,臧淑英,等.温度和水分对大兴安岭多年冻土区森林土壤有机碳矿化的影响[J].环境科学学报,2019,39(12):4269-4275. DOI:10.13671/j.hjkxxb.2019.0298.
[10] 张青青,张桂莲,伍海兵,等.上海市林地土壤有机碳分布特征及其与土壤理化性质的关系[J].浙江农林大学学报,2019,36(6):1087-1095. DOI:10.11833/j.issn.2095-0756.2019.06.005.
[11] 谢娜,冯备战,李春亮.不同土地利用方式土壤有机碳变化特征及与重金属的相关性分析[J].中国农学通报,2019,35(26):115-120.
[12] 赵泽阳,赵志忠,刘玉燕,等.海南岛东部地区不同类型农用地土壤有机碳分布特征及影响因素[J]. 西南农业学报,2019,32(5):1121-1126.
[13] 阿米娜木·艾力,常顺利,张毓涛, 等.天山云杉森林土壤有机碳沿海拔的分布规律及其影响因素[J].生态学报,2014,34(7):1626-1634. DOI:10.5846/stxb201305311261.
[14] 吴小刚,王文平,李斌,等. 中亚热带森林土壤有机碳的海拔梯度变化[J]. 土壤学报,2020,57(6):1539-1547. DOI:10.11766/trxb201909300184.
[15] 刘荣杰,吴亚丛,张英,等. 中国北亚热带天然次生林与杉木人工林土壤活性有机碳库的比较[J]. 植物生态学报,2012,36(5): 431-437. DOI:10.3724/SP.J.1258.2012.00431.
[16] 罗代清,黄勇奇,王书珍,等.基于Landsat-5 TM的麻城杜鹃花光谱分析与波段选择[J].湖北农业科学,2016,55(19):4991-4994. DOI:10.14088/j.cnki.issn0439-8114.2016.19.023.
[17] 沈志群,张琪,刘琳娟,等. 碳酸氢钠浸提-钼锑抗分光光度法测定土壤中的有效磷[J].环境监控与预警,2011,3(5):12-15. DOI:10.3969/j.issn.1674-6732.2011.05.004.
[18] 连少华. 四苯硼钠比浊界限分析法测钾[J]. 福建分析测试,2008,17(2):77-78.
[19] TEAM R C. R: A language and environment for statistical computing[M]. Vienna: R Foundation for Statistical Computing, 2019.
[20] 杜有新,吴从建,周赛霞,等.庐山不同海拔森林土壤有机碳密度及分布特征[J].应用生态学报,2011,22(7):1675-1681.
[21] 程浩,张厚喜,黄智军,等.武夷山不同海拔高度土壤有机碳含量变化特征[J]. 森林与环境学报,2018,38(2): 135-141. DOI:10.13324/j.cnki.jfcf.2018.02.002.
[22] 张参参, 吴小刚, 刘斌,等. 江西九连山不同海拔梯度土壤有机碳的变异规律[J]. 北京林业大学学报, 2019, 41(2): 19-28. DOI: 10.13332/j.1000-1522.20180383.
[23] 吴雅琼,刘国华,傅伯杰,等. 森林生态系统土壤 CO2释放随海拔梯度的变化及其影响因子[J].生态学报,2007,27(11): 4678-4685.
[24] 宋尊荣,秦佳双,李明金,等. 南亚热带马尾松人工林根系生物量分布格局[J]. 广西师范大学学报(自然科学版),2020,38(1): 149-156.
[25] 向慧敏,温达志,张玲玲,等.鼎湖山森林土壤活性碳及惰性碳沿海拔梯度的变化[J].生态学报,2015,35(18):6089-6099. DOI:10.5846/stxb201401230171.
[26] 周鑫,姜航,孙金兵,等.地形因子和物理保护对张广才岭次生林土壤有机碳密度的影响[J].北京林业大学学报,2016,38(4):94-106. DOI:10.13332/j.1000-1522.20150417.
[27] 丁咸庆,马慧静,朱晓龙,等.大围山不同海拔森林土壤有机碳垂直分布特征[J].水土保持学报,2015,29(2):258-262. DOI:10.13870/j.cnki.stbcxb.2015.02.048.
[28] 李臻, 梁月明, 潘复静, 等. 不同林龄马尾松人工林土壤酶活性及其生态化学计量特征[J]. 桂林理工大学学报,2021,41(1): 210-217.
[29] 徐侠,陈月琴,汪家社,等.武夷山不同海拔高度土壤活性有机碳变化[J].应用生态学报,2008,19(3):539-544.
[30] 李志安, 邹碧, 丁永祯,等. 森林凋落物分解重要影响因子及其研究进展[J]. 生态学杂志, 2004,23(6):77-83.
[31] 舒洋,魏江生,周梅,等. 乌拉山天然油松林土壤碳密度空间异质性研究[J].土壤通报,2013,44(6):1304-1307.
[32] 马剑,金铭,敬文茂,等. 祁连山中段典型植被土壤有机碳密度研究[J].中南林业科技大学学报,2020,40(8):99-105. DOI:10.14067/j.cnki.1673-923x.2020.08.012.
[33] 方运霆,莫江明, BROWN S,等.鼎湖山自然保护区土壤有机碳贮量和分配特征[J]. 生态学报, 2004,24(1):135-142.
[1] 高辉, 刘丽娟, 方江平. 西藏色季拉山森林群落沿海拔梯度变化格局[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[2] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9 -20 .
[3] 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21 -33 .
[4] 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34 -46 .
[5] 王金艳, 胡春, 高健. 一种面向知识编译的OBDD构造方法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 47 -54 .
[6] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55 -67 .
[7] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68 -78 .
[8] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79 -92 .
[9] 赵红涛, 刘志伟. λ重完全二部3-一致超图λK(3)n,n分解为超图双三角锥[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 93 -98 .
[10] 李梦, 曹庆先 , 胡宝清. 1960—2018年广西大陆海岸线时空变迁分析[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 99 -108 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发