|
广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (6): 122-130.doi: 10.16088/j.issn.1001-6600.2020.06.014
高辉1,2,3,4,5,6, 刘丽娟6, 方江平1,2,3,4,5*
GAO Hui1,2,3,4,5,6, LIU Lijuan6, FANG Jiangping1,2,3,4,5*
摘要: 为了揭示青藏高原森林群落系统发育结构在海拔梯度上的变化及其驱动因素,以西藏色季拉山森林群落为研究对象,采用群落系统发育α多样性Faith’s PD指数与系统发育β多样性PhyloSor指数对西藏典型森林群落的系统发育多样性进行分析,并结合净亲缘指数(net relatedness index)和最近亲缘指数(nearest taxon index),探讨色季拉山不同植被类型的森林群落系统发育结构沿海拔梯度的变化规律,进一步探究色季拉山沿海拔梯度的森林群落构建机制。从色季拉山海拔梯度的变化趋势来看,乔木群落的系统发育结构在高海拔和低海拔地区呈现聚集状态,在中海拔地区呈现离散结构。在所有空间尺度上,色季拉山系统发育的周转呈现出非随机状态,并且环境距离对系统发育的α及β多样性解释程度要显著高于空间距离。研究结果揭示,环境过滤在西藏色季拉山森林群落构建和生物多样性的维持中起到主导作用;随着海拔梯度变化,群落系统发育结构存在比较显著的差异性;不同群落间系统发育结构指数对于空间变量和环境变量的响应也是不一样的。本文同时从青藏高原独特的地理单元印证了生态群落构建过程中非随机过程的重要作用。
中图分类号:
[1] 曾文豪, 石慰, 唐一思, 等. 广西地区喀斯特与非喀斯特山地森林树木物种多样性及系统发育结构比较[J]. 生态学报, 2018, 38(24): 8707-8716. [2] JOHNSON M T J, STINCHCOMBE J R. An emerging synthesis between community ecology and evolutionary biology[J]. Trends in Ecology and Evolution, 2007, 22(5): 250-257. [3] HUBBELL S P.Unified neutral theory of biodiversity and biogeography[M]. Princeton: Princeton University Press, 2001. [4] YANG S Z, FAN H, LI K W, et al. How the diversity, abundance, size and climbing mechanisms of woody lianas are related to biotic and abiotic factors in a subtropical secondary forest, Taiwan[J]. Folia Geobotanica, 2018, 53(1): 77-88. [5] WESTOBY M, WRIGHT I J. Land-plant ecology on the basis of functional traits[J]. Trends in Ecology and Evolution, 2006, 21(5): 261-268. [6] ALI A, LIN S L, HE J K, et al. Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests[J]. Forest Ecology and Management, 2019, 432: 823-831. [7] JIANG F, XUN Y H, CAI H Y, et al. Functional traits can improve our understanding of niche-and dispersal-based processes[J].Oecologia, 2018, 186(3): 783-792. [8] KRESS W J, ERICKSON D L, SWENSON N G, et al. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot[J].PLoS ONE, 2010, 5(11): e15409. [9] WEBB C O, ACKERLY D D, McPEEK M A, et al. Phylogenies and community ecology[J]. Annual Review of Ecology and Systematics, 2002, 33: 475-505. [10] 侯嫚嫚, 李晓宇, 王均伟, 等. 长白山针阔混交林不同演替阶段群落系统发育和功能性状结构[J]. 生态学报, 2017, 37(22): 7503-7513. [11] QIAN H. Global comparisons of beta diversity among mammals, birds, reptiles, and amphibians across spatial scales and taxonomic ranks[J]. Journal of Systematics and Evolution, 2009, 47(5): 509-514. [12] KUNSTLER G, FALSTER D, COOMES D A, et al. Plant functional traits have globally consistent effects on competition[J]. Nature, 2016, 529: 204-207. [13] KRAFT N J B, COMITA L S, CHASE J M, et al. Disentangling the drivers of beta diversity along latitudinal and elevational gradients[J]. Science, 2011, 333(6050): 1755-1758. [14] BASELGA A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients[J]. Methods in Ecology and Evolution, 2013, 4(6): 552-557. [15] 高辉, 方江平, 刘丽娟, 等. 西藏原始林芝云杉林的空间结构与环境的关系[J]. 广西师范大学学报(自然科学版), 2020,38(5):95-103. [16] CARLUCCI M B, DEBASTIANI V J, PILLAR V D, et al. Between-and within-species trait variability and the assembly of sapling communities in forest patches[J]. Journal of Vegetation Science, 2015, 26(1): 21-31. [17] SOININEN J,McDONALD R, HILLEBRAND H. The distance decay of similarity in ecological communities[J]. Ecography, 2007, 30(1): 3-12. [18] LEGENDRE P, MI X C, REN H B, et al. Partitioning beta diversity in a subtropical broad-leaved forest of China[J]. Ecology, 2009, 90(3): 663-674. [19] MYERS J A, CHASE J M, JIMÉNEZ I, et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly[J]. Ecology Letters, 2013, 16(2): 151-157. [20] ANDERSON M J, CRIST T O, CHASE J M, et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist[J]. Ecology Letters, 2011, 14(1): 19-28. [21] DRAY S.Spacemake R: Spatial modelling[J]. R Package Version, 2010, 25(4): 17-29. [22] 刘珉璐, 潘翔, 陈庆辉, 等. 系统发育多样性与系统发育结构在岛屿植物群落保护中的意义: 以蜈支洲岛为例[J]. 热带亚热带植物学报, 2017, 25(5): 419-428. [23] LASKY J R, YANG J, ZHANG G C, et al. The role of functional traits and individual variation in the co-occurrence of Ficus species[J]. Ecology, 2014, 95(4): 978-990. [24] MORI A S, FUJII S, KITAGAWA R, et al. Null model approaches to evaluating the relative role of different assembly processes in shaping ecological communities[J].Oecologia, 2015, 178(1): 261-273. [25] BRYANT J A, LAMANNA C, MORLON H, et al. Microbes on mountain sides: contrasting elevational patterns of bacterial and plant diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(S1): 11505-11511. [26] MAYFIELD M M, LEVINE J M. Opposing effects of competitive exclusion on the phylogenetic structure of communities[J]. Ecology Letters, 2010, 13(9): 1085-1093. [27] 王均伟, 侯嫚嫚, 黄利亚, 等. 长白山阔叶红松林系统发育和功能性状beta多样性[J]. 北京林业大学学报, 2016, 38(10): 21-27. [28] 田平, 程小琴, 韩海荣, 等. 环境因子对山西太岳山典型森林类型物种多样性及其功能多样性的影响[J]. 西北植物学报, 2017, 37(5): 992-1003. [29] KOOYMAN R, ROSSETTO M, CORNWELL W, et al. Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests[J]. Global Ecology and Biogeography, 2011, 20(5): 707-716. [30] FANG J Y, WANG X P, TANG Z Y. Local and regional processes control species richness of plant communities: the species pool hypothesis[J]. Biodiversity Science, 2009, 17(6): 605-612. [31] SWENSON N G. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities[J]. PLoS ONE, 2011, 6(6):e21264. |
[1] | 高辉, 方江平, 刘丽娟, 刘禧. 西藏原始林芝云杉林的空间结构与环境的关系[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 95-103. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |