广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (6): 122-130.doi: 10.16088/j.issn.1001-6600.2020.06.014

• • 上一篇    下一篇

西藏色季拉山森林群落沿海拔梯度变化格局

高辉1,2,3,4,5,6, 刘丽娟6, 方江平1,2,3,4,5*   

  1. 1.西藏农牧学院高原生态研究所, 西藏林芝860000;
    2.西藏高原森林生态教育部重点实验室(西藏农牧学院), 西藏林芝860000;
    3.西藏林芝高山森林生态系统国家野外科学观测研究站(西藏农牧学院), 西藏林芝860000;
    4.西藏自治区高原森林生态实验室(西藏农牧学院), 西藏林芝860000;
    5.西藏自治区生态安全联合实验室(西藏农牧学院), 西藏林芝860000;
    6.西华师范大学环境科学与工程学院, 四川南充637002
  • 收稿日期:2019-11-27 发布日期:2020-11-30
  • 通讯作者: 方江平(1967—), 男, 安徽安庆人, 西藏农牧学院教授。 E-mail: 623911238@qq.com
  • 基金资助:
    国家重点研发计划(2016YFC0502006)

Change Pattern of Forest Community along Altitude Gradient in Sejila Mountain, Tibet, China

GAO Hui1,2,3,4,5,6, LIU Lijuan6, FANG Jiangping1,2,3,4,5*   

  1. 1. Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Tibet Nyingchi860000, China;
    2. Tibet Key Laboratory of Forest Ecology in Plateau Area (Tibet Agriculture and Animal Husbandry University), Ministry of Education, Tibet Nyingchi 860000, China;
    3. National Key Station of Field Scientific Observation and Experiment (Tibet Agriculture and Animal Husbandry University), Tibet Nyingchi 860000, China;
    4. Key Laboratory of Forest Ecology in Plateau Area (Tibet Agriculture and Animal Husbandry University), Tibet Autonomous Region, Tibet Nyingchi 860000, China;
    5. United Key Laboratories of Ecological Security (Tibet Agriculture and Animal Husbandry University), Tibet Autonomous Region, Tibet Nyingchi 860000, China;
    6. College of Environmental Science and Engineering, China West Normal University, Nanchong Sichuan 637002, China
  • Received:2019-11-27 Published:2020-11-30

摘要: 为了揭示青藏高原森林群落系统发育结构在海拔梯度上的变化及其驱动因素,以西藏色季拉山森林群落为研究对象,采用群落系统发育α多样性Faith’s PD指数与系统发育β多样性PhyloSor指数对西藏典型森林群落的系统发育多样性进行分析,并结合净亲缘指数(net relatedness index)和最近亲缘指数(nearest taxon index),探讨色季拉山不同植被类型的森林群落系统发育结构沿海拔梯度的变化规律,进一步探究色季拉山沿海拔梯度的森林群落构建机制。从色季拉山海拔梯度的变化趋势来看,乔木群落的系统发育结构在高海拔和低海拔地区呈现聚集状态,在中海拔地区呈现离散结构。在所有空间尺度上,色季拉山系统发育的周转呈现出非随机状态,并且环境距离对系统发育的α及β多样性解释程度要显著高于空间距离。研究结果揭示,环境过滤在西藏色季拉山森林群落构建和生物多样性的维持中起到主导作用;随着海拔梯度变化,群落系统发育结构存在比较显著的差异性;不同群落间系统发育结构指数对于空间变量和环境变量的响应也是不一样的。本文同时从青藏高原独特的地理单元印证了生态群落构建过程中非随机过程的重要作用。

关键词: 色季拉山, 森林群落, 系统发育α多样性, 系统发育β多样性, 海拔梯度, 变化格局, 西藏

Abstract: In order to reveal the changes of the phylogenetic structure of forest communities in the Qinghai-Tibet Plateau on the elevation gradient and its driving factors. This study took the Tibetan Sejila Mountain forest community as the research subjects, adopted the phylogenetic diversity Faith’s PD index and the phylogenetic β diversity PhyloSor index to analyze phylogenetic diversity of typical forest communities in Tibet, and used the net relatedness index and the nearest taxon index to explore the phylogenetic structure of forest communities with different vegetation types and the variation along the elevation gradient. The results show that the phylogenetic structure (NRI and NTI) of the arbor community accumulates at low altitudes and high altitudes, and the discrete structures are presented in the mid-altitude regions. At all spatial scales, the phylogenetic turnover appears to be non-random, and the environmental distance is significantly higher than the spatial distance for the phylogenetic α and β diversity. The results reveal that environmental filtration plays a leading role in the construction of forest communities and the maintenance of biodiversity in Sejila Mountain, Tibet. There is a significant change in the phylogenetic structure of the community along the elevation gradient. Different community phylogenetic structural indices respond differently to spatial and environmental factor variables. At the same time, it also confirms the crucial role of the non-random process in the process of ecological community construction from the unique geographical unit of the Qinghai-Tibet Plateau.

Key words: Sejila mountain, forest community, phylogenetic alpha diversity, phylogenetic beta diversity, elevation gradient, variation patternizan, Tibet, China

中图分类号: 

  • Q145.2
[1] 曾文豪, 石慰, 唐一思, 等. 广西地区喀斯特与非喀斯特山地森林树木物种多样性及系统发育结构比较[J]. 生态学报, 2018, 38(24): 8707-8716.
[2] JOHNSON M T J, STINCHCOMBE J R. An emerging synthesis between community ecology and evolutionary biology[J]. Trends in Ecology and Evolution, 2007, 22(5): 250-257.
[3] HUBBELL S P.Unified neutral theory of biodiversity and biogeography[M]. Princeton: Princeton University Press, 2001.
[4] YANG S Z, FAN H, LI K W, et al. How the diversity, abundance, size and climbing mechanisms of woody lianas are related to biotic and abiotic factors in a subtropical secondary forest, Taiwan[J]. Folia Geobotanica, 2018, 53(1): 77-88.
[5] WESTOBY M, WRIGHT I J. Land-plant ecology on the basis of functional traits[J]. Trends in Ecology and Evolution, 2006, 21(5): 261-268.
[6] ALI A, LIN S L, HE J K, et al. Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests[J]. Forest Ecology and Management, 2019, 432: 823-831.
[7] JIANG F, XUN Y H, CAI H Y, et al. Functional traits can improve our understanding of niche-and dispersal-based processes[J].Oecologia, 2018, 186(3): 783-792.
[8] KRESS W J, ERICKSON D L, SWENSON N G, et al. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot[J].PLoS ONE, 2010, 5(11): e15409.
[9] WEBB C O, ACKERLY D D, McPEEK M A, et al. Phylogenies and community ecology[J]. Annual Review of Ecology and Systematics, 2002, 33: 475-505.
[10] 侯嫚嫚, 李晓宇, 王均伟, 等. 长白山针阔混交林不同演替阶段群落系统发育和功能性状结构[J]. 生态学报, 2017, 37(22): 7503-7513.
[11] QIAN H. Global comparisons of beta diversity among mammals, birds, reptiles, and amphibians across spatial scales and taxonomic ranks[J]. Journal of Systematics and Evolution, 2009, 47(5): 509-514.
[12] KUNSTLER G, FALSTER D, COOMES D A, et al. Plant functional traits have globally consistent effects on competition[J]. Nature, 2016, 529: 204-207.
[13] KRAFT N J B, COMITA L S, CHASE J M, et al. Disentangling the drivers of beta diversity along latitudinal and elevational gradients[J]. Science, 2011, 333(6050): 1755-1758.
[14] BASELGA A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients[J]. Methods in Ecology and Evolution, 2013, 4(6): 552-557.
[15] 高辉, 方江平, 刘丽娟, 等. 西藏原始林芝云杉林的空间结构与环境的关系[J]. 广西师范大学学报(自然科学版), 2020,38(5):95-103.
[16] CARLUCCI M B, DEBASTIANI V J, PILLAR V D, et al. Between-and within-species trait variability and the assembly of sapling communities in forest patches[J]. Journal of Vegetation Science, 2015, 26(1): 21-31.
[17] SOININEN J,McDONALD R, HILLEBRAND H. The distance decay of similarity in ecological communities[J]. Ecography, 2007, 30(1): 3-12.
[18] LEGENDRE P, MI X C, REN H B, et al. Partitioning beta diversity in a subtropical broad-leaved forest of China[J]. Ecology, 2009, 90(3): 663-674.
[19] MYERS J A, CHASE J M, JIMÉNEZ I, et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly[J]. Ecology Letters, 2013, 16(2): 151-157.
[20] ANDERSON M J, CRIST T O, CHASE J M, et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist[J]. Ecology Letters, 2011, 14(1): 19-28.
[21] DRAY S.Spacemake R: Spatial modelling[J]. R Package Version, 2010, 25(4): 17-29.
[22] 刘珉璐, 潘翔, 陈庆辉, 等. 系统发育多样性与系统发育结构在岛屿植物群落保护中的意义: 以蜈支洲岛为例[J]. 热带亚热带植物学报, 2017, 25(5): 419-428.
[23] LASKY J R, YANG J, ZHANG G C, et al. The role of functional traits and individual variation in the co-occurrence of Ficus species[J]. Ecology, 2014, 95(4): 978-990.
[24] MORI A S, FUJII S, KITAGAWA R, et al. Null model approaches to evaluating the relative role of different assembly processes in shaping ecological communities[J].Oecologia, 2015, 178(1): 261-273.
[25] BRYANT J A, LAMANNA C, MORLON H, et al. Microbes on mountain sides: contrasting elevational patterns of bacterial and plant diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(S1): 11505-11511.
[26] MAYFIELD M M, LEVINE J M. Opposing effects of competitive exclusion on the phylogenetic structure of communities[J]. Ecology Letters, 2010, 13(9): 1085-1093.
[27] 王均伟, 侯嫚嫚, 黄利亚, 等. 长白山阔叶红松林系统发育和功能性状beta多样性[J]. 北京林业大学学报, 2016, 38(10): 21-27.
[28] 田平, 程小琴, 韩海荣, 等. 环境因子对山西太岳山典型森林类型物种多样性及其功能多样性的影响[J]. 西北植物学报, 2017, 37(5): 992-1003.
[29] KOOYMAN R, ROSSETTO M, CORNWELL W, et al. Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests[J]. Global Ecology and Biogeography, 2011, 20(5): 707-716.
[30] FANG J Y, WANG X P, TANG Z Y. Local and regional processes control species richness of plant communities: the species pool hypothesis[J]. Biodiversity Science, 2009, 17(6): 605-612.
[31] SWENSON N G. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities[J]. PLoS ONE, 2011, 6(6):e21264.
[1] 高辉, 方江平, 刘丽娟, 刘禧. 西藏原始林芝云杉林的空间结构与环境的关系[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 95-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐建闽, 韦佳, 首艳芳. 基于博弈论-云模型的城市道路交通运行状态综合评价[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 1 -10 .
[2] 张灿龙, 李燕茹, 李志欣, 王智文. 基于核相关滤波与特征融合的分块跟踪算法[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 12 -23 .
[3] 许伦辉, 曹宇超, 林培群. 基于融合免疫优化和遗传算法的多应急物资中心选址与调度[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 1 -13 .
[4] 胡锦铭, 韦笃取. 分数阶永磁同步电机的广义同步研究[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 14 -20 .
[5] 朱勇建, 罗坚, 秦运柏, 秦国峰, 唐楚柳. 基于光度立体和级数展开法的金属表面缺陷检测方法[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 21 -31 .
[6] 唐熔钗, 伍锡如. 基于改进YOLO-V3网络的百香果实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 32 -39 .
[7] 张汝昌, 邱杰, 王明堂, 陈庆锋. 基于自适应局部特征的蛋白质三维结构分类[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 40 -50 .
[8] 陈东, 胡葵. 覆盖Gorenstein AC-平坦维数[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 51 -55 .
[9] 左佳斌, 贠永震. 一类分数阶微分方程的反周期边值问题[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 56 -64 .
[10] 王跃, 叶红艳, 雷俊, 索洪敏. 带线性项Kirchhoff型问题的无穷多古典解[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 65 -73 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发