广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (4): 79-92.doi: 10.16088/j.issn.1001-6600.2020102901

• • 上一篇    下一篇

三自由度碰撞振动系统的余维二擦边分岔与混沌控制

李松涛, 李群宏*, 张文   

  1. 广西大学 数学与信息科学学院, 广西 南宁 530004
  • 修回日期:2020-12-16 出版日期:2021-07-25 发布日期:2021-07-23
  • 通讯作者: 李群宏(1964—), 男(壮族), 广西扶绥人, 广西大学教授, 博士。E-mail: liqh@gxu.edu.cn
  • 基金资助:
    国家自然科学基金(11872154)

Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems

LI Songtao, LI Qunhong*, ZHANG Wen   

  1. College of Mathematics and Information Science, Guangxi University, Nanning Guangxi 530004, China
  • Revised:2020-12-16 Online:2021-07-25 Published:2021-07-23

摘要: 对于一类三自由度碰撞振动系统,利用不连续映射方法讨论擦边周期轨道附近的动力学行为,理论推导1/n碰撞周期运动发生鞍结分岔和倍周期分岔的存在性条件,得出在鞍结分岔和倍周期分岔与擦边分岔同时发生时系统出现余维二分岔,得出的数值仿真与理论推导结果一致;在余维二分岔点附近,结合Lyapunov指数与局部分岔图对系统的分岔与混沌运动进行研究,在一定参数范围内,系统的周期运动与混沌运动交替进行;最后,对系统的混沌运动施加脉冲控制使系统稳定到周期轨道,通过对比控制效果图验证该控制方法的有效性。

关键词: 不连续映射, 余维二分岔, Lyapunov指数, 混沌运动, 脉冲控制

Abstract: For a three-degree-of-freedom vibro-impact system, the dynamic behavior near the grazing periodic orbit is discussed by using discontinuous mapping method. The existence conditions of saddle-node bifurcation and period-doubling bifurcation in 1/n impact periodic motion are deduced theoretically. It is concluded that co-dimension-two bifurcations occur when saddle-node bifurcation, period-doubling bifurcation and grazing bifurcation are detected simultaneously and the numerical simulation results are consistent with the theoretical results above. The bifurcation and chaotic motions of the system near co-dimension-two bifurcation points are studied by combining Lyapunov exponent and the local bifurcation diagram and the periodic motion and chaotic motion of the system appear in turn within a certain range of parameters. Then, using pulse control of chaos, the chaotic motions of the system can be suppressed to the stable periodic orbit. The effectiveness of the control method is verified by comparing the control diagram.

Key words: discontinuous mapping, co-dimension-two bifurcation, Lyapunov exponent, chaotic motion, pulse control

中图分类号: 

  • O322
[1]BERNARDO M D L, CHAMPNEYS A R, BUDD C J, et al. Piecewise-smooth dynamical systems: theory and applications[M]. London: Springer-Verlag London Limited, 2008. DOI:10.1007/s00419-007-0125-1.
[2]NORDMARK A B. Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators[J]. Nonlinearity, 2001, 14(6): 1517-1542. DOI:10.1088/0951-7715/14/6/306.
[3]DANKOWICZ H, SVAHN F. On the stabilizability of near-grazing dynamics in impact oscillators[J]. International Journal of Robust and Nonlinear Control, 2007, 17(15): 1405-1429. DOI:10.1002/rnc.1252.
[4]LEINE R I. Non-smooth stability analysis of the parametrically excited impact oscillator[J]. International Journal of Non-Linear Mechanics, 2012, 47(9): 1020-1032. DOI:10.1016/j.ijnonlinmec.2012.06.010.
[5]赵益波, 罗晓曙, 唐国宁,等. 电流反馈型Buck-Boost变换器的非线性动力学研究[J]. 广西师范大学学报(自然科学版), 2005, 23(2): 9-12. DOI:10.3969/j.issn.1001-6600.2005.02.003.
[6]WEN G L, YIN S, XU H D, et al. Analysis of grazing bifurcation from periodic motion to quasi-periodic motion in impact-damper systems[J]. Chaos, Solitons and Fractals, 2016, 83: 112-118. DOI:10.1016/j.chaos.2015.11.039.
[7]NORDMARK A B. Non-periodic motion caused by grazing incidence in an impact oscillator[J]. Journal of Sound and Vibration, 1991, 145(2): 279-297. DOI:10.1016/0022-460X(91)90592-8.
[8]XU H D, YIN S, WEN G L, et al. Discrete-in-time feedback control of near-grazing dynamics in the two-degree-of-freedom vibro-impact system with a clearance[J]. Nonlinear Dynamics, 2017, 87(2): 1127-1137. DOI:10.1007/s11071-016-3103-8.
[9]YIN S K, SHEN Y K, WEN G L, et al. Feedback control of grazing-induced chaos in the single-degree-of-freedom impact oscillator[J]. Journal of Computational and Nonlinear Dynamics, 2017, 13(1): 011012. DOI:10.1115/1.4037924.
[10]伍帅, 徐洁琼, 王子汉. 一类二自由度碰撞振动系统的余维二擦边分岔研究[J].振动与冲击, 2020, 39(20):113-120. DOI:10.13465/j.cnki.jvs.2020.20.015.
[11]PETERKA F. Bifurcations and transition phenomena in an impact oscillator[J]. Chaos, Solitons and Fractals, 1996, 7(10): 1635-1647. DOI:10.1016/S0960-0779(96)00028-8.
[12]DANKOWICZ H,ZHAO X P. Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators[J]. Physica D Nonlinear Phenomena, 2005, 202(3/4): 238-257. DOI:10.1016/j.physd.2005.02.008.
[13]LI Q H, XU J Q, CHEN P, Theoretical analysis of co-dimension-two grazing bifurcations in n-degree-of-freedom impact oscillator with symmetrical constrains[J]. Nonlinear Dynamics, 2015, 82(4): 1641-1657. DOI:10.1007/s11071-015-2266-z.
[14]金俐, 陆启韶. 非光滑动力系统Lyapunov指数谱的计算方法[J]. 力学学报,2005, 37(1): 40-46. DOI:10.3321/j.issn:0459-1879.2005.01.006.
[15]LI Q H, CHEN Y M. Analysis of the Lyapunov exponential spectrum in a vibro-impact system with two-sided rigid stops[J]. Journal of Vibration and Shock, 2012, 31(7): 148-152. DOI:10.13465/j.cnki.jvs.2012.07.017.
[16]苟向锋, 罗冠炜, 吕小红. 含双侧刚性约束碰撞振动系统的混沌控制[J]. 机械科学与技术, 2011, 30(8): 1262-1266.
[17]吕小红, 朱喜锋, 罗冠炜. 含双侧约束碰撞振动系统的OGY混沌控制[J]. 机械科学与技术, 2016, 35(4): 531-534. DOI:10.13433/j.cnki.1003-8728.2016.0406.
[18]WANG L, XU W , LI Y. Impulsive control of a class of vibro-impact systems[J]. Physics Letters A, 2008, 372(32): 5309-5313. DOI:10.1016/j.physleta.2008.06.027.
[19]丁旺才, 谢建华, 李国芳. 三自由度碰撞振动系统的周期运动稳定性与分岔[J].工程力学, 2004, 21(3): 123-128.DOI:10.3969/j.issn.1000-4750.2004.03.023.
[20]伍新,文桂林,徐慧东,等. 三自由度含间隙碰撞振动系统Neimark-Sacker 分岔的反控制[J]. 物理学报, 2015, 64(20): 200504. DOI:10.7498/aps.64.200504.
[1] 杨鲲, 林娇, 蒋贵荣. 具有脉冲生育的随机SIS传染病模型的动力学分析[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 戴云飞, 祝龙记. 应用于超级电容储能的开关准Z源双向DC/DC变换器研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 11 -19 .
[2] 吕惠炼, 胡维平. 基于端到端深度神经网络的语音情感识别研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 20 -26 .
[3] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[4] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9 -20 .
[5] 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21 -33 .
[6] 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34 -46 .
[7] 王金艳, 胡春, 高健. 一种面向知识编译的OBDD构造方法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 47 -54 .
[8] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55 -67 .
[9] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68 -78 .
[10] 赵红涛, 刘志伟. λ重完全二部3-一致超图λK(3)n,n分解为超图双三角锥[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 93 -98 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发