|
|
广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (2): 175-189.doi: 10.16088/j.issn.1001-6600.2025050801
谢翔, 江林峰, 杨凤莲*
XIE Xiang, JIANG Linfeng, YANG Fenglian*
摘要: 针对传统物理信息神经网络(PINNs)在处理高频特征时存在精度不足的问题,本文提出一种基于自适应权重两阶段PINNs方法(AWTS-PINNs)求解具有高频解的偏微分方程。该方法基于预训练和微调相结合的两阶段训练框架,引入具有高频特征响应能力的激活函数,并融合神经正切核自适应机制动态调节损失函数权重,从而显著提升模型对高频特征的表达与捕捉能力。实验结果表明,与PINNs、NTK-PINNs、RFF-PINNs和DG-PINNs等现有方法相比,AWTS-PINNs在捕捉高频特征方面表现出色,具有更高的精度和求解效率。在一维和二维数值实验中,AWTS-PINNs均取得最低测试误差,精度达到10-4量级。
中图分类号: O241.82
| [1] 马亮, 马西奎, 迟明珺, 等.一种适用于嵌入式导电薄层的高阶电磁波混合时域有限差分-时程精细积分法[J].电工技术学报, 2025, 40(5):1333-1343.DOI:10.19595/j.cnki.1000-6753.tces.240355. [2] 王雯宇, 程茜, 梁淇玮, 等.一维谐振子薛定谔方程含时演化非级数解析解[J].物理与工程, 2024, 34(4):98-109.DOI:10.3969/j.issn.1009-7104.2024.04.016. [3] 魏健达, 张江敏.有限元方法求解二维薛定谔方程[J].福建师范大学学报(自然科学版), 2022, 38(1):24-33.DOI:10.12046/j.issn.1000-5277.2022.01.004. [4] 高飞, 郭晓斌, 袁冬芳, 等.改进PINNs方法求解边界层对流占优扩散方程[J].广西师范大学学报(自然科学版), 2023, 41(6):33-50.DOI:10.16088/j.issn.1001-6600.2023032203. [5] 韩烁, 江林峰, 杨建斌.基于注意力机制PINNs方法求解圣维南方程[J].广西师范大学学报(自然科学版), 2025, 43(4):58-68.DOI:10.16088/j.issn.1001-6600.2024061802. [6] CAI X H, HUANG C J, TAO-RAN, et al.A mesh-free finite-difference scheme for frequency-domain acoustic wave simulation with topography[J].Applied Geophysics, 2023, 20(4):447-459.DOI:10.1007/s11770-022-0981-z. [7] JIM DOUGLAS J.Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures[J].SIAM Journal on Numerical Analysis, 1982, 19(5):871-885.DOI:10.2307/2156980. [8] ZHANG Y.A finite difference method for fractional partial differential equation[J].Applied Mathematics and Computation, 2009, 215(2):524-529.DOI:10.1016/j.amc.2009.05.018. [9] TAYLOR C A, HUGHES T J R, ZARINS C K.Finite element modeling of blood flow in arteries[J].Computer Methods in Applied Mechanics and Engineering, 1998, 158(1/2):155-196.DOI:10.1016/S0045-7825(98)80008-X. [10] QIN X Q, MA Y C, ZHANG Y.Two-grid method for characteristics finite-element solution of 2d nonlinear convection-dominated diffusion problem[J].Applied Mathematics and Mechanics, 2005, 26(11):1506-1514.DOI:10.1007/BF03246258. [11] EYMARD R, GALLOUЁT T, HERBIN R.Finite volume methods[J].Handbook of Numerical Analysis, 2000, 7:713-1018.DOI:10.1016/S1570-8659(00)07005-8. [12] RAISSI M, PERDIKARIS P, KARNIADAKIS G E.Physics-informed neural networks:a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J].Journal of Computational Physics, 2019, 378:686-707.DOI:10.1016/j.jcp.2018.10.045. [13] MATTEY R, GHOSH S.A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations[J].Computer Methods in Applied Mechanics and Engineering, 2022, 390:114474.DOI:10.1016/j.cma.2021.114474. [14] ZHOU W, XU Y F.Data-guided physics-informed neural networks for solving inverse problems in partial differential equations[EB/OL].(2024-07-15)[2025-05-08].https://doi.org/10.48550/arXiv.2407.10836.DOI:10.48550/arXiv.2407.10836. [15] WANG S F, YU X L, PERDIKARIS P.When and why PINNs fail to train:a neural tangent kernel perspective[J].Journal of Computational Physics, 2022, 449:110768.DOI:10.1016/j.jcp.2021.110768. [16] McCLENNY L D, BRAGA-NETO U M.Self-adaptive physics-informed neural networks[J].Journal of Computational Physics, 2023, 474:111722.DOI:10.1016/j.jcp.2022.111722. [17] WANG S F, TENG Y J, PERDIKARIS P.Understanding and mitigating gradient flow pathologies in physics-informed neural networks[J].SIAM Journal on Scientific Computing, 2021, 43(5):A3055-A3081.DOI:10.1137/20m1318043. [18] WANG S F, WANG H W, PERDIKARIS P.On the eigenvector bias of Fourier feature networks:From regression to solving multi-scale PDEs with physics-informed neural networks[J].Computer Methods in Applied Mechanics and Engineering, 2021, 384:113938.DOI:10.1016/j.cma.2021.113938. [19] COOLEY M, SHANKAR V, KIRBY R M, et al.Fourier PINNs:from strong boundary conditions to adaptive Fourier bases[EB/OL].(2024-10-04)[2025-05-08].https://doi.org/10.48550/arXiv.2410.03496.DOI:10.48550/arXiv.2410.03496. [20] RATHORE P, LEI W, FRANGELLA Z, et al.Challenges in training PINNs:a loss landscape perspective[EB/OL].(2024-06-03)[2025-05-08].https://doi.org/10.48550/arXiv.2402.01868.DOI:10.48550/arXiv.2402.01868. |
| [1] | 高飞, 郭晓斌, 袁冬芳, 曹富军. 改进PINNs方法求解边界层对流占优扩散方程[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 33-50. |
| [2] | 葛颖颖, 李梅. 一类拟线性非自治模型的最优收获[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 54-61. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |