|
|
广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (1): 227-236.doi: 10.16088/j.issn.1001-6600.2025012201
• 生态环境科学研究 • 上一篇
何文敏1,2,3, 刘宣园1,2,3, 周岐海1,2,3, 张明霞1,2,3*
HE Wenmin1,2,3, LIU Xuanyuan1,2,3, ZHOU Qihai1,2,3, ZHANG Mingxia1,2,3 *
摘要: 土地利用数据可以为很多科研工作提供重要基础,遥感影像作为主要数据来源,广泛应用于土地利用的制图。为了提高遥感影像分类的准确度,往往需要结合多源数据对影像进行解译。广西喀斯特地区地形复杂,近年来大量扩张的人工林与天然林难以区分,给遥感影像的解译带来困难。本文基于随机森林算法,对广西崇左地区的遥感影像进行土地利用分类解译。研究设计2组实验:第1组实验仅使用遥感影像数据进行分类,第2组实验在遥感影像的基础上加入海拔和坡度数据作为辅助变量。实验结果显示,仅使用遥感影像的分类准确度为0.849,而加入海拔和坡度数据后,总体准确度提升至0.961。这一改进提高了天然林、人工林和农田等土地利用类型的区分度,在喀斯特这一类崎岖地貌中尤为实用。本文研究为土地利用监测提供更好的解决方案。
中图分类号: TP18; TP751; P237
| [1] HOMER C, HUANG C Q, YANG L M, et al. Development of a 2001 national land-cover database for the United States[J]. Photogrammetric Engineering & Remote Sensing, 2004, 70(7): 829-840. DOI: 10.14358/pers.70.7.829. [2] FOODY G M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 2002, 80(1): 185-201. DOI: 10.1016/S0034-4257(01)00295-4. [3] HANSEN M C, DEFRIES R S, TOWNSHEND J R G, et al. Global land cover classification at 1 km spatial resolution using a classification tree approach[J]. International Journal of Remote Sensing, 2000, 21(6/7): 1331-1364. DOI: 10.1080/014311600210209. [4] FRIEDL M A, MCIVER D K, HODGES J C F, et al. Global land cover mapping from MODIS: algorithms and early results[J]. Remote Sensing of Environment, 2002, 83(1/2): 287-302. DOI: 10.1016/S0034-4257(02)00078-0. [5] WULDER M A, WHITE J C, GOWARD S N, et al. Landsat continuity: Issues and opportunities for land cover monitoring[J]. Remote Sensing of Environment, 2008, 112(3): 955-969. DOI: 10.1016/j.rse.2007.07.004. [6] LOVELAND T R, REED B C, BROWN J F, et al. International journal of remote sensing[J]. Remote Sensing of Environment, 2000, 21(6): 1303-1330. DOI: 10.1080/014311600210191. [7] ZHU Z, WOODCOCK C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2014, 144: 152-171. DOI: 10.1016/j.rse.2014.01.011. [8] 薛洋, 曾庆科, 夏海英, 等. 基于卷积神经网络超分辨率重建的遥感图像融合[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 33-41. DOI: 10.16088/j.issn.1001-6600.2018.02.005. [9] ZHENG Y, CHENG L L, WANG J Q, et al. Spatial conflict of land use based on “element-pattern-effect”: Logical main lines and coordination paths[J]. Journal of Natural Resources, 2025, 40(2): 316. DOI: 10.31497/zrzyxb.20250203. [10] BURKHARD B, KROLL F, NEDKOV S, et al. Mapping ecosystem service supply, demand and budgets[J]. Ecological Indicators, 2012, 21: 17-29. DOI: 10.1016/j.ecolind.2011.06.019. [11] GUIDICI D, CLARK M. One-dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San francisco bay area, California[J]. Remote Sensing, 2017, 9(6): 629. DOI: 10.3390/rs9060629. [12] WESSELS K J, REYERS B, VAN JAARSVELD A S, et al. Identification of potential conflict areas between land transformation and biodiversity conservation in north-eastern South Africa[J]. Agriculture, Ecosystems & Environment, 2003, 95(1): 157-178. DOI: 10.1016/S0167-8809(02)00102-0. [13] JIN S, DEWITZ J, HOMER C, Et al. Completion of the 2006 national land cover database for the conterminous united states[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(9): 858-864. [14] 罗艳华, 李平星, 肖伟烨, 等. 土地利用转型的生态环境效应研究进展与展望[J]. 生态科学, 2024, 43(6): 220-231. DOI: 10.14108/j.cnki.1008-8873.2024.06.024. [15] LI Y, WU H, ZHU L Q, et al. Identification of ecosystem service degradation risks in Zhengzhou based on multi-scenario simulation of land use changes[J]. Journal of Natural Resources, 2025, 40(2): 493. DOI: 10.31497/zrzyxb.20250213. [16] 黄子豪, 杜华强, 李雪建, 等. 土地利用/覆盖变化及其对森林碳收支影响研究综述[J]. 遥感学报, 2025, 25(1): 49-69. DOI: 10.11834/jrs.20233169. [17] TOPALOĞLU R H, SERTEL E, MUSAOĞLU N. Assessment of classification accuracies of sentinel-2 and landsat-8 data for land cover/use mapping[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B8: 1055-1059. DOI: 10.5194/isprsarchives-xli-b8-1055-2016. [18] KHATAMI R, MOUNTRAKIS G, STEHMAN S V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research[J]. Remote Sensing of Environment, 2016, 177: 89-100. DOI: 10.1016/j.rse.2016.02.028. [19] GÓMEZ C, WHITE J C, WULDER M A. Optical remotely sensed time series data for land cover classification: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116: 55-72. DOI: 10.1016/j.isprsjprs.2016.03.008. [20] DURO D C, FRANKLIN S E, DUBÉ M G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery[J]. Remote Sensing of Environment, 2012, 118: 259-272. DOI: 10.1016/j.rse.2011.11.020. [21] XIA J S, DALLA MURA M, CHANUSSOT J, et al. Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4768-4786. DOI: 10.1109/TGRS.2015.2409195. [22] CHEN Y B, DOU P, YANG X J. Improving land use/cover classification with a multiple classifier system using AdaBoost integration technique[J]. Remote Sensing, 2017, 9(10): 1055. DOI: 10.3390/rs9101055. [23] LIU S C, DU K C, ZHENG Y J, et al. Remote sensing change detection technology in the Era of artificial intelligence: Inheritance, development and challenges[J]. National Remote Sensing Bulletin, 2023, 27(9): 1975-1987. DOI: 10.11834/jrs.20222199. [24] 周明. 高精度卫星遥感影像在工程测绘中的应用与挑战[J]. Engineering Technology and Quality Management, 2025, 3(1): 63-65. DOI: 10.61369/ETQM.9091. [25] 张国宾, 韩如雪, 张健秀. 高分辨率遥感影像解译方法探讨[J]. 科技创新导报, 2018, 15(13): 77-78. DOI: 10.16660/j.cnki.1674-098X.2018.13.077. [26] 周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1): 182-197. [27] 曹恒硕, 丁宁, 钱建军, 等. 多源高分辨率卫星遥感海岸线数据集[J]. 计算机与数字工程, 2025, 53(1): 202-208. DOI: 10. 3969/j.issn.1672-9722.2025.01.037. [28] 肖丹, 安裕伦, 熊康宁. 3S技术支持下喀斯特景观解译与格局研究: 以贵州省清镇市为例[C]//现代地理科学与贵州社会经济. 贵州财经学院经济与管理学院, 贵州师范大学地理与生物科学学院, 贵州师范大学中国南方喀斯特研究院, 2009: 87-92. [29] 金伟, 余著成, 徐全, 等. 1991—2021年江山仙霞岭省级自然保护区土地覆被动态变化遥感监测[J]. 自然保护地, 2024, 4(4): 84-93. DOI: 10.12335/2096-8981.2023120701. [30] GUAN H Y, LI J, CHAPMAN M, et al. Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests[J]. International Journal of Remote Sensing, 2013, 34(14): 5166-5186. DOI: 10.1080/01431161.2013.788261. [31] BELGIU M, DRĂGU L. Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31. DOI: 10.1016/j.isprsjprs.2016.01.011. [32] GISLASON P O, BENEDIKTSSON J A, SVEINSSON J R. Random Forests for land cover classification[J]. Pattern Recognition Letters, 2006, 27(4): 294-300. DOI: 10.1016/j.patrec.2005.08.011. [33] BRUZZONE L, CONESE C, MASELLI F, et al. Multisource classification of complex rural areas by statistical and neural-network approaches[J]. Photogrammetric Engineering and Remote Sensing, 1997, 63(5): 523-533. [34] 刘志洋, 尹慧杰, 李明渊, 等. 利用多源遥感数据的中国三大经济带代表区域经济发展分析[J/OL]. 武汉大学学报(信息科学版): 1-17[2025-06-11]. https://doi.org/10.13203/j.whugis20240233. [35] 潘耀忠, 李强子, 张锦水, 等. 主要农作物面积多维多尺度立体统计遥感调查技术研究进展[J]. 北京师范大学学报(自然科学版), 2025, 61(1): 118-25. DOI: 10.12202/j.0476-0301.2024188. [36] GAHEGAN M, FLACK J. A Model to support the integration of image understanding techniques within a GIS[J]. Photogrammetric Engineering & Remote Sensing, 1996, 62(5): 483-90. DOI: 0099-1112/96/6205-483$3.00/0. [37] FAHSI A, TSEGAYE T, TADESSE W, et al. Incorporation of digital elevation models with Landsat-TM data to improve land cover classification accuracy[J]. Forest Ecology and Management, 2000, 128(1/2): 57-64. DOI: 10.1016/S0378-1127(99)00272-8. [38] 朱星磊, 安裕伦, 黄祖宏, 等. 喀斯特地区遥感影像解译新算法: 支持向量机算法[J]. 中国岩溶, 2011, 30(2): 222-226. DOI: 10.3969/j.issn.1001-4810.2011.02.016. [39] 赵银军, 曾兰, 何忠, 等. 基于多源遥感影像的喀斯特地貌景观解译及格局研究[J]. 水土保持研究, 2017, 24(4): 158-162. DOI: 10.13869/j.cnki.rswc.2017.04.026. [40] 刘宣园, 管超毅, 张明霞, 等. 保护区缓解耕地扩张对喀斯特森林景观破碎化的影响研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 202-210. DOI: 10.16088/j.issn.1001-6600.2022101701. [41] 廖超明, 韦媛媛, 唐丹, 等. 喀斯特地区土地利用冲突识别与影响机制[J]. 水土保持研究, 2025, 32(1): 358-367. DOI: 10.13869/j.cnki.rswc.2025.01.028. [42] 陈知明, 张江, 邱汉清, 等. 基于密集连接的高分辨率遥感图像分类[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 88-94. DOI: 10.16088/j.issn.1001-6600.2021071503. [43] LI Q, YUE Y M, LIU S Y, et al. Beyond tree cover: Characterizing Southern China’s forests using deep learning[J]. Remote Sensing in Ecology and Conservation, 2023, 9(1): 17-32. DOI: 10.1002/rse2.292. [44] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. DOI: 10.1007/BF00058655. [45] DIETTERICH T G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization[J]. Machine Learning, 2000, 40(2): 139-157. DOI: 10.1023/A:1007607513941. [46] BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45: 5-32. DOI: 10.1023/A:1010933404324. [47] RODRIGUEZ-GALIANO V F, GHIMIRE B, ROGAN J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 93-104. DOI: 10.1016/j.isprsjprs.2011.11.002. [48] KAMBHAM S P, BHARATHI D. Deep learning based image fusion applied on landsat-8 archival data using UVCGAN[C] //2023 Innovations in Power and Advanced Computing Technologies (i-PACT). December 8-10, 2023, Kuala Lumpur, Malaysia. IEEE, 2023: 1-6. DOI: 10.1109/i-PACT58649.2023.10434448. [49] SINGHAL S, JAMES L, G A R V, et al. Cloud detection from AWiFS imagery using deep learning[C]//2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS). January 27-29, 2023, Hyderabad, India. IEEE, 2023: 1-4. DOI: 10.1109/MIGARS57353.2023.10064610. [50] WU H R, GENG J, JIANG W. Multidomain constrained translation network for change detection in heterogeneous remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5616916. DOI: 10.1109/TGRS.2024.3381196. [51] KUSSUL N, LAVRENIUK M, SKAKUN S, et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782. DOI: 10.1109/LGRS.2017.2681128. [52] THANH NOI P, KAPPAS M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery[J]. Sensors, 2017, 18(1): 18. DOI: 10.3390/s18010018. [53] 江涛. 遥感影像解译标志库的建立和应用[J]. 地理空间信息, 2010, 8(5): 31-33. DOI: 10.3969/j.issn.1672-4623.2010.05.011. |
| [1] | 张晓瑞, 陈雨, 王振波. 江淮地区城市土地利用演变对景观格局与生态系统服务价值的影响[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 199-214. |
| [2] | 王军广, 王鹏, 赵志忠, 唐薇, 赵泽阳, 李燕. 海南岛东部地区土地利用方式对土壤有机碳含量的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 171-179. |
| [3] | 朱婧, 刘鼎, 王珊, 黄祚水, 梁建宏. 土壤养分及其化学计量特征对微生物碳利用效率的影响机制[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 376-387. |
| [4] | 郜红娟, 韩会庆, 罗绪强, 李金艳, 陈梦玲, 张新鼎. 贵州土地利用变化对淡水生态系统服务的影响[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 157-163. |
| [5] | 李贤江, 石淑芹, 蔡为民, 曹玉青. 基于CA-Markov模型的天津滨海新区土地利用变化模拟[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 133-143. |
| [6] | 何东艳, 华璀, 卢远. 漓江流域土地利用生态风险评价[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 172-178. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |