广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (1): 172-184.doi: 10.16088/j.issn.1001-6600.2024113001

• 生态环境科学研究 • 上一篇    下一篇

粉垄对木薯块根形成期土壤真菌群落多样性的影响

黄显雯1, 彭晓辉1, 彭晓雪1, 甘李1, 李贵龙1, 廖茜婷1, 申章佑2, 黄渝岚2*, 韦茂贵1,3*   

  1. 1.广西大学 农学院,广西 南宁 530004;
    2.广西农业科学院 经济作物研究所,广西 南宁 530007;
    3.广西农业环境与农产品安全重点实验室(广西大学),广西 南宁 530004
  • 收稿日期:2024-11-30 修回日期:2025-02-09 出版日期:2026-01-05 发布日期:2026-01-26
  • 通讯作者: 黄渝岚(1986—),女,广西玉林人,广西农业科学院助理研究员,博士。E-mail:gxeduyulan@163.com;韦茂贵(1986—),女,广西横县人,广西大学副教授,博士。E-mail: weimaogui0806@163.com
  • 基金资助:
    国家自然科学基金(31960389,31860347)

Effect of Fenlong Tillage on Soil Fungal Community Diversity During Tuberous Root Formation Period of Cassava

HUANG Xianwen1, PENG Xiaohui1, PENG Xiaoxue1, GAN Li1, LI Guilong1, LIAO Qianting1, SHEN Zhangyou2, HUANG Yulan2*, WEI Maogui1,3*   

  1. 1. College of Agriculture, Guangxi University, Nanning Guangxi 530004, China;
    2. Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Guangxi 530007, China;
    3. Guangxi Key Laboratory of Agro-environment and Agro-products Safety (Guangxi University), Nanning Guangxi 530004, China
  • Received:2024-11-30 Revised:2025-02-09 Online:2026-01-05 Published:2026-01-26

摘要: 本研究以木薯品种华南205为材料,常规耕作为对照,粉垄耕作栽培木薯。运用高通量测序技术与生物信息学分析工具,同时结合土壤农化分析方法,研究粉垄对木薯块根形成期根际与非根际真菌群落多样性的影响,揭示其增产机制,为优化现有木薯栽培方法提供理论依据。结果表明:粉垄耕作显著提高木薯块根产量(干质量),达7.94±1.13 t/hm2,较常规耕作(4.93±0.73 t/hm2)增产61.1%(P<0.01),表明粉垄耕作对木薯具有显著增产作用。粉垄耕作显著影响土壤真菌群落的α多样性及群落组成(P<0.05)。木薯根际和非根际土壤的主要优势菌门均为子囊菌门、SAR超类群、担子菌门、毛菌门和壶菌门等,但相对丰度存在差异。真菌群落相对丰度与环境因子的相关分析和冗余分析结果显示,硝酸还原酶、脲酶及亚硝酸还原酶活性,速效钾、碱解氮、速效磷含量,过氧化氢酶活性,土壤pH值以及有机质含量对真菌群落变化具有显著影响(P<0.05),对子囊菌门、担子菌门和SAR超类群的影响更为明显,其中,硝酸还原酶活性、速效钾含量、脲酶活性、碱解氮含量为主要影响因子。木薯粉垄耕作通过改善土壤耕层结构,使对真菌群落结构影响较大的环境因子发生改变,进而改变土壤真菌群落的α多样性和β多样性。

关键词: 木薯, 粉垄耕作, 土壤真菌, 群落多样性, 块根形成期, 高通量测序

Abstract: The study aims to investigate the effects of Fenlong tillage on the soil fungal community in the rhizosphere and bulk soils during the tuberous root formation period of cassava, and to reveal its yield-enhancing mechanism, providing theoretical basis for optimizing the existing cassava cultivation methods. Using South China 205 as the material, the conventional tillage as the control, the cultivation of cassava with Fenlong tillage, combined with high-throughput sequencing technology and bioinformatics methods, combined with soil agrochemical analysis methods, the study investigated the impact of Fenlong tillage on the fungal community diversity in the rhizosphere and bulk soils during the period of cassava root tuber formation. The results showed that the dry weight yield of cassava tubers root was significantly increased by the powder tillage, reaching 7.94 ± 1.13 t/hm2, which was 61.1% higher (P<0.01) than that of the conventional tillage (4.93 ± 0.73 t/hm2), indicating that the Fenlong tillage had a significant yield-increasing effect on cassava. Fenlong tillage significantly affected the Alpha(α) diversity (P<0.05) and community composition of soil fungal communities. The dominant fungal phyla in the rhizosphere and bulk soils were ascomycetes, SAR hypergroup, basidiomycetes, mollispores, and chytrids, but there were differences in relative abundance. The correlation analysis and redundancy analysis results of the relative abundance of fungal communities and environmental factors showed that nitrase activity, available potassium content, urease activity, ammonium nitrogen content, nitrous oxide activity, catalase activity, soil pH value, organic matter content, and available phosphorus content had significant effects on the changes of fungal communities (P<0.05), with a more significant effect on the ascomycetes, basidiomycetes, and SAR hypergroup. Nitrase activity, available potassium content, urease activity, and ammonium nitrogen content were the main influencing factors. Cassava Fenlong tillage can change the environmental factors that had a greater impact on fungal community structure, such as nitrase activity, available potassium content, urease activity, alkali-soluble nitrogen nitrogen content, nitrous oxide enzyme activity, catalase enzyme activity, soil pH value, organic matter content, and available phosphorus content, thereby changing the Alpha (α) and Beta (β) diversity of soil fungal communities.

Key words: cassava, fenlong tillage, soil fungi, community diversity, tuberous root formation period, high-throughput sequencing

中图分类号:  S533; Q948.12

[1] 黄渝岚, 李艳英, 周佳, 等. 266份木薯种质资源农艺性状分析评价[J]. 热带作物学报, 2024, 45(4): 712-721. DOI: 10.3969/j.issn.1000-2561.2024.04.007.
[2] 阮丽霞, 李恒锐, 梁振华, 等. 不同连作年限对食用木薯产量、品质及土壤微生物群落的影响[J]. 中国土壤与肥料2024(11): 181-195. DOI: 10.11838/sfsc.1673-6257.24034.
[3] 周贵靖. 木薯根际土壤理化性状与连作障碍关系研究[D]. 南宁: 广西大学, 2017.
[4] 樊吴静, 罗兴录, 单忠英. 灌溉定额对膜下滴灌木薯产量及土壤理化性状的影响[J]. 中国农学通报, 2019, 35(28): 25-31.DOI: 10.11924/j.issn.1000-6850.casb18050083.
[5] 吴林甲, 祁琛, 闫秋艳, 等. 耕作方式对旱地麦田土壤团聚体及其碳氮组分分布的影响[J]. 干旱地区农业研究, 2023, 41(2): 193-200, 220. DOI: 10.7606/j.issn.1000-7601.2023.02.21.
[6] 陈婉华, 袁伟, 王子阳, 等. 不同耕作方式与秸秆还田对土壤酶活性及水稻产量的影响[J]. 中国土壤与肥料, 2022(7): 162-169. DOI: 10.11838/sfsc.1673-6257.21199.
[7] 李浩, 黄金玲, 李志刚, 等. 粉垄耕作提高土壤养分有效性并促进甘蔗维管组织发育和养分吸收[J]. 植物营养与肥料学报, 2021, 27(2): 204-214. DOI: 10.11674/zwyf.20300.
[8] 麻仲花, 吴娜, 胡永琪, 等. 粉垄耕作对甜高粱农田土壤耕层特性及产量的影响[J]. 中国土壤与肥料, 2022(11): 190-198. DOI: 10.11838/sfsc.1673-6257.21541.
[9] 高传俊, 杨晨曦, 高欣, 等. 种植模式对科尔沁沙地土壤微生物群落的影响[J]. 干旱区资源与环境, 2023, 37(4): 162-169. DOI: 10.13448/j.cnki.jalre.2023.099.
[10] 郝然, 杨红, 孙晓东, 等. 长白山苔原带土壤真菌与环境因子的相关性[J]. 贵州农业科学, 2023, 51(3): 73-81. DOI: 10.3969/j.issn.1001-3601.2023.03.010.
[11] 徐慧芳, 万子维, 盛荣, 等. 不同耕作模式对稻田土壤真菌丰度及群落结构的影响[J]. 华中农业大学学报, 2022, 41(6): 35-41. DOI: 10.3969/j.issn.1000-2421.2022.6.hznydx202206004.
[12] 仪小梅. 基于土地整治复垦耕地土壤微生物群落结构和多样性分析[J]. 上海国土资源, 2023, 44(1): 99-106.
[13] 朱建宁, 刘杰, 王昌昆, 等. 三江平原县域耕地土壤细菌多样性分布特征及其影响因素[J]. 生态学杂志, 2023: 1-14. DOI: 10.3969/j.issn.1000-2421.2022.6.hznydx202206004.
[14] 王明涛, 赵玉红, 苗彦军, 等. 不同土地利用方式对藏东南典型草原土壤真菌群落的影响[J]. 草地学报, 2023, 31(4): 992-1000. DOI: 10.11733/j.issn.1007-0435.2023.04.007.
[15] 陈昭旭, 高聚林, 于晓芳, 等. 不同耕作及秸秆还田方式对土壤物理特性及作物产量的影响[J]. 内蒙古农业大学学报(自然科学版), 2022,43(16): 21-27. DOI: 10.16853/j.cnki.1009-3575.2022.06.004.
[16] 刘新坤, 孙盛凯, 段霄汉, 等. 耕作方式对土壤团聚体微生物及有机碳矿化的影响研究进展及展望[J]. 中国农学通报, 2023, 39(7): 88-94. DOI: 10.11924/j.issn.1000-6850.casb2022-0229.
[17] 劳承英, 申章佑, 李艳英, 等. 基于高通量测序技术分析不同耕作方式下水稻根际土壤真菌多样性[J]. 热带作物学报, 2021, 42(9): 2717-2726. DOI: 10.3969/j.issn.1000-2561.2021.09.038.
[18] 刘江汉, 何文寿. 粉垄耕作对土壤性质及马铃薯产量的影响[J]. 东北农业科学, 2020, 45(2): 20-25. DOI: 10.16423/j.cnki.1003-8701.2020.02.006.
[19] 夏皖豫. 粉垄耕作下玉米地土壤微生物多样性和酶活性的研究[D]. 银川: 宁夏大学, 2021. DOI: 10.27257/d.cnki.gnxhc.2021.000057.
[20] 黎佐生. 粉垄耕作下宿根蔗地土壤微生物及酶活性变化[D]. 南宁:广西大学, 2020.
[21] 杨慰贤. 粉垄结合减氮施肥对木薯地微生物群落及温室气体排放的影响[D]. 南宁:广西大学, 2021.
[22] 覃锋燕, 杨慰贤, 彭晓辉, 等. 粉垄耕作木薯根际与非根际土壤的细菌群落结构多样性差异[J]. 西南农业学报, 2022, 35(4): 729-739. DOI: 10.16213/j.cnki.scjas.2022.4.001.
[23] 郑梅迎, 刘福童, 郑邦玺, 等. 不同年限烤烟连作对土壤养分和微生物变化的影响[J]. 华中农业大学学报, 2024, 43(4): 182-191. DOI: 10.13300/j.cnki.hnlkxb.2024.04.020.
[24] 王万坤, 康超, 曾维军, 等. 不同土壤环境冬荪覆土层微生物多样性[J]. 西南农业学报, 2023, 36(6): 1222-1233. DOI: 10.16213/j.cnki.scjas.2023.6.013.
[25] CAI J, ZHANG J, DING Y, et al. Different fertilizers applied alter fungal community structure in rhizospheric soil of cassava (Manihot esculenta Crantz) and increase crop yield[J]. Frontiers in Microbiology, 2021, 12: 663781. DOI: 10.3389/fmicb.2021.663781.
[26] 刘洪, 韦本辉, 党柯柯, 等. 粉垄耕作对甘蔗土壤微生物群落的影响[J]. 热带作物学报, 2022, 43(3): 597-605. DOI: 10.3969/j.issn.1000-2561.2022.03.019.
[27] 韩笑, 杨慰贤, 覃锋燕, 等. 不同木薯品种主要根系分泌物提取与鉴定[J]. 热带作物学报, 2022, 43(6): 1248-1258. DOI: 10.3969/j.issn.1000-2561.2022.06.018.
[28] 王静, 袁洁, 王磊, 等. 施肥方法对甘薯根际土壤真菌群落的影响[J]. 植物营养与肥料学报, 2023, 29(5): 876-888. DOI: 10.11674/zwyf.2022510.
[29] 李茂森, 王丽渊, 杨波, 等. 生物炭对烤烟成熟期根际真菌群落结构的影响及功能预测分析[J]. 农业资源与环境学报, 2022, 39(5): 1041-1048. DOI: 10.13254/j.jare.2021.0318.
[30] 王艳云, 郭笃发. 黄河三角洲盐碱地土壤真菌多样性[J]. 北方园艺, 2016, 369(18): 185-189. DOI: 10.11937/bfyy.201618046.
[31] ALI KHATTAK W, SUN J F, ZAMAN F, et al. The role of agricultural land management in modulating water-carbon interplay within dryland ecological systems[J]. Agriculture, Ecosystems & Environment, 2025, 378: 109315. DOI: 10.1016/j.agee.2024.109315.
[32] 牟建平, 滕宝霞, 史中飞, 等. 基于高通量测序考察甘肃黄芪种植区根际土壤微生物群落结构及多样性[J]. 中国野生植物资源, 2022, 41(3): 15-24. DOI: 10.3969/j.issn.1006-9690.2022.03.003.
[33] 张蕾, 王强, 杨新月, 等. 黄土丘陵区退耕还林对土壤真菌群落的影响[J]. 环境科学, 2023, 44(3): 1758-1767. DOI: 10.13227/j.hjkx.202204264.
[34] 张树萌, 黄懿梅, 倪银霞, 等. 宁南山区人工林草对土壤真菌群落的影响[J]. 中国环境科学, 2018, 38(4): 1449-1458. DOI: 10.3969/j.issn.1000-6923.2018.04.031.
[35] 陈彦云, 夏皖豫, 赵辉, 等. 粉垄耕作对耕地土壤酶活性、微生物群落结构和功能多样性的影响[J]. 生态学报, 2022, 42(12): 5009-5021. DOI: 10.5846/stxb202106241676.
[36] 王圣洁. 杉木人工林土壤真核生物多样性研究[D]. 长沙:中南林业科技大学, 2014.
[37] ZHANG J, LI F Q, LIAO P Z, et al. Smash ridge tillage strongly influence soil functionality, physiology and rice yield[J]. Saudi Journal of Biological Sciences, 2021, 28(2): 1297-1307. DOI: 10.1016/j.sjbs.2020.11.054.
[38] ZHENG B F, JING Y F, ZOU Y D, et al. Responses of tobacco growth and development, nitrogen use efficiency, crop yield and economic benefits to smash ridge tillage and nitrogen reduction[J]. Agronomy, 2022, 12(9): 2097. DOI: 10.3390/agronomy12092097.
[39] 刘震, 徐玉鹏, 黄伟, 等. 苜蓿连作对盐碱土壤微生物群落结构的影响[J]. 作物研究, 2020,34(6):557-562, 567. DOI: 10.16848/j.cnki.issn.1001-5280.2020.06.09.
[40] 冀明辉, 高丽娟, 李龙飞, 等. 梨园土壤真菌群落垂直分布及功能预测分析[J]. 山东农业科学, 2023, 55(3): 83-94. DOI: 10.14083/j.issn.1001-4942.2023.03.013.
[41] 张旭升. 不同植被修复模式下土壤真菌的研究及纳米材料对土壤理化性质和酶活性的影响[D]. 太原:山西大学, 2021.
[42] 杜璨, 杜璇, 范学科, 等. 云杉林和红桦林土壤真菌群落的多样性及其与环境因子的相关性[J]. 贵州农业科学, 2020, 48(9): 74-80. DOI: 10.3969/j.issn.1001-3601.2020.09.015.
[43] 袁凯倪. 养分输入对白洋淀水质的影响及微生物群落的特征分析[D]. 石家庄:河北地质大学, 2022.
[1] 陈炯宇, 赵鑫鑫, 陈蕊蕊, 付海天, 盘欢, 郑华, 周时艺, 曾新华, 罗燕春. 20份木薯种质不同生育期对细菌性枯萎病的生理响应[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 126-142.
[2] 庞丽珍, 杜丽娜, 王波. 漓江3种淡水螺类肠道微生物研究[J]. 广西师范大学学报(自然科学版), 2025, 43(5): 207-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘晓娟, 林璐, 胡郁葱, 潘雷. 站点周边用地类型对地铁乘车满意度影响研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 1 -12 .
[2] 韩华彬, 高丙朋, 蔡鑫, 孙凯. 基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 13 -28 .
[3] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29 -41 .
[4] 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42 -53 .
[5] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1 -9 .
[6] 黄艳国, 肖洁, 吴水清. 基于D2STGNN的双向高效多尺度交通流预测[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 10 -22 .
[7] 刘志豪, 李自立, 苏珉. 智能通信与无人机结合的YOLOv8电动车骑行者头盔佩戴检测方法[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 23 -32 .
[8] 张竹露, 李华强, 刘洋, 许立雄. 基于Bi-LSTM特征融合和FT-FSL的非侵入式负荷辨识[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 33 -44 .
[9] 王涛, 黎远松, 石睿, 陈慧宁, 侯宪庆. MGDE-UNet:轻量化光伏电池缺陷分割模型[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 45 -55 .
[10] 黄文杰, 罗维平, 陈镇南, 彭志祥, 丁梓豪. 基于YOLO11的轻量化PCB缺陷检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 56 -67 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发