|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (5): 207-217.doi: 10.16088/j.issn.1001-6600.2024112502
庞丽珍1,2, 杜丽娜1,2*, 王波3*
PANG Lizhen1,2, DU Lina1,2 *, WANG Bo3*
摘要: 格氏短沟蜷、三带田螺和绘石田螺均是重要的淡水经济螺类,在水生态恢复中发挥着重要作用。水生动物的肠道微生物在食物消化和营养吸收中起至关重要的作用。本研究采用16S rDNA高通量测序方法,对漓江3种淡水螺肠道微生物组成和功能进行比较。结果表明,在门水平上,格氏短沟蜷、三带田螺和绘石田螺的菌群组成中共有的优势菌为变形菌门Proteobacteria、厚壁菌门Firmicutes、拟杆菌门Bacteroidetes和酸杆菌门Actinobacteria。其中,变形菌门在3组中都是丰度最大的菌门。在属水平上,共有的优势菌有气单胞菌属Aeromonas、不动杆菌属Acinetobacter和假单胞菌属Pseudomonas。在群落多样性方面,格氏短沟蜷与三带田螺之间无显著差异(P>0.05),而绘石田螺与格氏短沟蜷和三带田螺之间存在极显著差异(P<0.01)。基于PICRUSt分析预测格氏短沟蜷、三带田螺和绘石田螺肠道菌群的功能,3种螺的肠道微生物主要参与新陈代谢过程,包括氨基酸代谢、辅酶和维生素代谢、异生物降解与代谢、萜类和多酮类化合物代谢、脂质代谢以及其他氨基酸代谢等。
中图分类号: S917.4
| [1] GALLO B D, FARRELL J M, LEYDET B F. Fish gut microbiome: a primer to an emerging discipline in the fisheries sciences[J]. Fisheries, 2020, 45(5): 271-282. DOI: 10.1002/fsh.10379. [2] ARAI Y, SHOJI H, SANTOSA I, et al. Effects of fetal growth restriction on postnatal gut microbiota in a rat model[J]. Journal of Pediatric Gastroenterology and Nutrition, 2023, 77(2): e42-e47. DOI: 10.1097/MPG.0000000000003805. [3] ZYOUD S H, SHAKHSHIR M, ABUSHANAB A S, et al. Unveiling the hidden world of gut health: exploring cutting-edge research through visualizing randomized controlled trials on the gut microbiota[J]. World Journal of Clinical Cases, 2023, 11(26): 6132-6146. DOI: 10.12998/wjcc.v11.i26.6132. [4] 管强, 刘吉平, 武海涛, 等. 中国自然湿地螺类生态学研究进展[J]. 生态学报, 2016, 36(9): 2471-2481. DOI: 10.5846/stxb201411162267. [5] 毕鼎淇, 陈会波, 李欣阳,等. 基于文献计量学的螺类肠道菌群研究现状及热点分析[J]. 中国血吸虫病防治杂志, 2018, 30(5): 571-574. DOI: 10.16250/j.32.1374.2018189. [6] BÄCKHED F, LEY R E, SONNENBURG J L, et al. Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307(5717): 1915-1920. DOI: 10.1126/science.1104816. [7] FAN P X, BIAN B L, TENG L, et al. Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation[J]. The ISME Journal, 2020, 14(1): 302-317. DOI: 10.1038/s41396-019-0529-2. [8] ZHOU K Q, QIN J Q, PANG H F, et al. Comparison of the composition and function of gut microbes between adult and juvenile Cipangopaludina chinensis in the rice snail system[J]. PeerJ, 2022, 10(5): e13042. DOI: 10.7717/peerj.13042. [9] HUANG G P, WANG L, LI J, et al. Seasonal shift of the gut microbiome synchronizes host peripheral circadian rhythm for physiological adaptation to a low-fat diet in the giant panda[J]. Cell Reports, 2022, 38(3): 110203. DOI: 10.1016/j.celrep.2021.110203. [10] GUTIERREZ LOPEZ D E, LASHINGER L M, WEINSTOCK G M, et al. Circadian rhythms and the gut microbiome synchronize the host's metabolic response to diet[J]. Cell Metabolism, 2021, 33(5): 873-887. DOI: 10.1016/j.cmet.2021.03.015. [11] CHEN L, LI S X, XIAO Q,et al. Composition and diversity of gut microbiota in Pomacea canaliculata in sexes and between developmental stages[J]. BMC Microbiology, 2021, 21(1): 200. DOI: 10.1186/s12866-021-02259-2. [12] 胡宗福, 常杰, 佟庆, 等. 高通量测序方法分析两种草食性淡水螺肠道菌群多样性[J]. 生物工程学报, 2020, 36(12): 2622-2634. DOI: 10.13345/j.cjb.200322. [13] LI L H, LV S, LU Y, et al. Spatial structure of the microbiome in the gut of Pomacea canaliculata[J]. BMC Microbiology, 2019, 19(1): 273. DOI: 10.1186/s12866-019-1661-x. [14] LINDSAY E C, METCALFE N B, LLEWELLYN M S, et al. The potential role of the gut microbiota in shaping host energetics and metabolic rate[J]. Journal of Animal Ecology, 2020, 89(11): 2415-2426. DOI: 10.1111/1365-2656.13327. [15] KAUR H, ALI S A, YAN F, et al. Interactions between the gut microbiota-derived functional factors and intestinal epithelial cells-implication in the microbiota-host mutualism[J]. Frontiers in Immunology, 2022(13): 1006081. DOI: 10.3389/fimmu.2022.1006081. [16] XU B, XU W J, LI J J, et al. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation[J]. BMC Genomics, 2015, 16(1): 174. DOI: 10.1186/s12864-015-1378-7. [17] 梁琍, 姚俊杰, 周路, 等. 锦江河螺类资源调查[J]. 铜仁学院学报, 2012, 14(6): 139-143. DOI: 10.3969/j.issn.1673-9639.2012.06.035. [18] 梁敏, 陶虎春, 倪晋仁, 等. 石田螺处理城市剩余污泥试验[J]. 环境科学研究, 2010, 23(9): 1180-1184. [19] GUO M J, WU F H, HAO G G,et al. Bacillus subtilis improves immunity and disease resistance in rabbits[J]. Frontiers in Immunology, 2017, 8: 354. DOI: 10.3389/fimmu.2017.00354. [20] GAIKWAD S S, SHOUCHE Y S, GADE W N, et al. Deep sequencing reveals highly variable gut microbial composition of invasive fish Mossambicus Tilapia (Oreochromis mossambicus) collected from two different habitats[J]. Indian Journal of Microbiology, 2017, 57(2): 235-240. DOI: 10.1007/s12088-017-0641-9. [21] BANKERS L, DAHAN D, NEIMAN M, et al. Invasive freshwater snails form novel microbial relationships[J]. Evolutionary Applications, 2020, 14(3): 770-780. DOI: 10.1111/eva.13158. [22] LI H, LI T T, BEASLEY D E, et al. Diet diversity is associated with beta but not alpha diversity of pika gut microbiota[J]. Frontiers in Microbiology, 2016, 7: 1169. DOI: 10.3389/fmicb.2016.01169. [23] XUN W B, LIU Y P, LI W, et al. Specialized metabolic functions of keystone taxa sustain soil microbiome stability[J]. Microbiome, 2021, 9(1): 35. DOI: 10.1186/s40168-020-00985-9. [24] HU Z F, CHEN X, CHANG J, et al. Compositional and predicted functional analysis of the gut microbiota of Radix auricularia (Linnaeus) via high-throughput illumina sequencing[J]. PeerJ, 2018, 6: e5537. DOI: 10.7717/peerj.5537. eCollection2018. [25] HU Z F, TONG Q, CHANG J,et al. Gut bacterial communities in the freshwater snail Planorbella trivolvis and their modification by a non-herbivorous diet[J]. PeerJ, 2021, 9: e10716. DOI: 10.7717/peerj.10716.eCollection2021. [26] RIMOLDI S, TEROVA G, ASCIONE C, et al. Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources[J]. PLoS One, 2018, 13(3): e0193652. DOI: 10.1371/journal.pone.0193652. [27] CHEN Y H, PENNER G B, LI M T, et al. Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet[J]. Applied and Environmental Microbiology, 2011, 77(16): 5770-5781. DOI: 10.1128/AEM.00375-11. [28] SHIN N R, WHON T W, BAE J W, et al. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends in Biotechnology, 2015, 33(9): 496-503. DOI: 10.1016/j.tibtech.2015.06.011. [29] LI Y F, YANG N, LIANG X, et al. Elevated seawater temperatures decrease microbial diversity in the gut of Mytilus coruscus[J]. Frontiers in Physiology, 2018, 9: 839. DOI: 10.3389/fphys.2018.00839. [30] WEXLER A G, GOODMAN A L. An insider's perspective: Bacteroides as a window into the microbiome[J]. Nature Microbiology, 2017, 2:17026. DOI: 10.1038/nmicrobiol.2017.26. [31] JIANG Y, XIE C X, YANG G M, et al. Cellulase-producing bacteria of Aeromonas are dominant and indigenous in the gut of Ctenopharyngodon idellus (Valenciennes)[J]. Aquaculture Research, 2011, 42(4): 499-505. DOI: 10.1111/j.1365-2109.2010.02645.x. [32] WU Z Q, JIANG C, LING F, et al. Effects of dietary supplementation of intestinal autochthonous bacteria on the innate immunity and disease resistance of grass carp (Ctenopharyngodon idellus)[J]. Aquaculture, 2015, 438: 105-114. DOI: 10.1016/j.aquaculture.2014.12.041. [33] TSUCHIYA C, SAKATA T, SUGITA H,et al. Novel ecological niche of Cetobacterium somerae an anaerobic bacterium in the intestinal tracts of freshwater fish[J]. Letters in Applied Microbiology, 2008, 46(1): 43-48. DOI: 10.1111/j.1472-765X.2007.02258.x. [34] TANAKA R, OOTSUBO M, SAWABE T, et al. Biodiversity and in situ abundance of gut microflora of abalone (Haliotis discus Hannai) determined by culture-independent techniques[J]. Aquaculture, 2004, 241(1/2/3/4): 453-463. DOI: 10.1016/j.aquaculture.2004.08.032. [35] HOLBEN W E, WILLIAMS P, GILBERT M A, et al. Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon[J]. Microbial Ecology, 2002, 44(2): 175-185. DOI: 10.1007/s00248-002-1011-6. [36] RAZIN S, YOGEV D, NAOT Y, et al. Molecular biology and pathogenicity of mycoplasmas[J]. Microbiology and Molecular Biology Reviews: MMBR, 1998, 62(4): 1094-1156. DOI: 10.1128/MMBR.62.4.1094-1156.1998. [37] SOMMER F, BÄCKHED F. The gut microbiota:masters of host development and physiology[J]. Nature Reviews Microbiology, 2013, 11(4): 227-238. DOI: 10.1038/nrmicro2974. [38] JOYNSON R, PRITCHARD L, OSEMWEKHA E, et al. Metagenomic analysis of the gut microbiome of the common black slug Arion ater in search of novel lignocellulose degrading enzymes[J]. Frontiers Microbiology, 2017, 8: 2181. DOI: 10.3389/fmicb.2017.02181. [39] YANG Y, YANG J, WU W M, et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. role of gut microorganisms[J]. Environmental Science & Technology, 2015, 49(20): 12087-12093. DOI: 10.1021/acs.est.5b02663. |
| [1] | 肖咪云, 阮楚晋, 陈寿昆, 刘裕华, 陆祖军. 一株产天然蓝色素细菌的分离鉴定[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 131-138. |
| [2] | 张小敏, 林勇, 宾石玉, 余艳玲, 曾兰, 钟丹丹, 张永德. 基于线粒体16S rDNA基因序列沼虾属的系统发育研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 133-140. |
| [3] | 王培, 曹建华, 宋德贵, 辜澜涛, 董研玲. 一株产海因酶菌种的筛选与鉴定[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 119-124. |
| [4] | 吴超, 钟一文. 蛋白质功能预测的蚁群优化算法[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 136-141. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |