广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (5): 207-217.doi: 10.16088/j.issn.1001-6600.2024112502

• 生态环境科学研究 • 上一篇    下一篇

漓江3种淡水螺类肠道微生物研究

庞丽珍1,2, 杜丽娜1,2*, 王波3*   

  1. 1.广西师范大学 生命科学学院,广西 桂林 541006;
    2.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006;
    3.广西渌金生态科技有限公司,广西 南宁 530000
  • 收稿日期:2024-11-25 修回日期:2025-01-07 出版日期:2025-09-05 发布日期:2025-08-05
  • 通讯作者: 杜丽娜(1981—),女,吉林辽源人,广西师范大学副教授,博士。E-mail: dulina@mailbox.gxnu.edu.cn
  • 作者简介:王波(1982—),男,广西全州人,广西渌金生态科技有限公司高级工程师,博士。E-mail:540660448@qq.com
  • 基金资助:
    广西南岭生物多样性保护优先区域(柳州片区)生物多样性调查与评估项目(LZZC2023-C3-990153-ZHZX)

Study on Intestinal Microorganisms of Three Freshwater Snails in Lijiang River

PANG Lizhen1,2, DU Lina1,2 *, WANG Bo3*   

  1. 1. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    3. Guangxi Lujin Ecological Technology Co., Ltd, Nanning Guangxi 530000, China
  • Received:2024-11-25 Revised:2025-01-07 Online:2025-09-05 Published:2025-08-05

摘要: 格氏短沟蜷、三带田螺和绘石田螺均是重要的淡水经济螺类,在水生态恢复中发挥着重要作用。水生动物的肠道微生物在食物消化和营养吸收中起至关重要的作用。本研究采用16S rDNA高通量测序方法,对漓江3种淡水螺肠道微生物组成和功能进行比较。结果表明,在门水平上,格氏短沟蜷、三带田螺和绘石田螺的菌群组成中共有的优势菌为变形菌门Proteobacteria、厚壁菌门Firmicutes、拟杆菌门Bacteroidetes和酸杆菌门Actinobacteria。其中,变形菌门在3组中都是丰度最大的菌门。在属水平上,共有的优势菌有气单胞菌属Aeromonas、不动杆菌属Acinetobacter和假单胞菌属Pseudomonas。在群落多样性方面,格氏短沟蜷与三带田螺之间无显著差异(P>0.05),而绘石田螺与格氏短沟蜷和三带田螺之间存在极显著差异(P<0.01)。基于PICRUSt分析预测格氏短沟蜷、三带田螺和绘石田螺肠道菌群的功能,3种螺的肠道微生物主要参与新陈代谢过程,包括氨基酸代谢、辅酶和维生素代谢、异生物降解与代谢、萜类和多酮类化合物代谢、脂质代谢以及其他氨基酸代谢等。

关键词: 肠道微生物, 16S rDNA, 高通量测序, 淡水螺, 功能预测

Abstract: Semisulcospira gredleri, Viviparus tricinctus and Sinotaia limnophila are all important economic freshwater snail species, which play significant ecological roles in the restoration of water ecology. The gut microbes of aquatic animals play a crucial role in food digestion and nutrient absorption. Therefore, in this study, 16S rDNA high-throughput sequencing was use to compare the composition and function of gut microbiota in three species of freshwater snails from the Lijiang River. The results showed that at the phylum level, the common dominant microorganisms in the three groups were Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria. Proteobacteria was the most abundant bacteria in both groups. At the genus level, the common dominant bacteria were Aeromonas, Acinetobacter, Pseudomonas. In terms of community diversity, there was no significant difference between Semisulcospira gredleri and Viviparus tricinctus (P>0.05), while there was a highly significant difference between Sinotaia limnophila and both Semisulcospira gredleri and Viviparus tricinctus (P<0.01). Based on PICRUSt analysis, the intestinal microbiota of three species of snails was predicted to be mainly involved in metabolic processes, including amino acid metabolism, metabolism of cofactors and vitamins, xenobiotics biodegradation and metabolism, metabolism of terpenoids and polyketides, lipid metabolism, metabolism of other amino acids.

Key words: intestinal flora, 16S rDNA, high-throughput sequencing, freshwater snail, functional prediction

中图分类号:  S917.4

[1] GALLO B D, FARRELL J M, LEYDET B F. Fish gut microbiome: a primer to an emerging discipline in the fisheries sciences[J]. Fisheries, 2020, 45(5): 271-282. DOI: 10.1002/fsh.10379.
[2] ARAI Y, SHOJI H, SANTOSA I, et al. Effects of fetal growth restriction on postnatal gut microbiota in a rat model[J]. Journal of Pediatric Gastroenterology and Nutrition, 2023, 77(2): e42-e47. DOI: 10.1097/MPG.0000000000003805.
[3] ZYOUD S H, SHAKHSHIR M, ABUSHANAB A S, et al. Unveiling the hidden world of gut health: exploring cutting-edge research through visualizing randomized controlled trials on the gut microbiota[J]. World Journal of Clinical Cases, 2023, 11(26): 6132-6146. DOI: 10.12998/wjcc.v11.i26.6132.
[4] 管强, 刘吉平, 武海涛, 等. 中国自然湿地螺类生态学研究进展[J]. 生态学报, 2016, 36(9): 2471-2481. DOI: 10.5846/stxb201411162267.
[5] 毕鼎淇, 陈会波, 李欣阳,等. 基于文献计量学的螺类肠道菌群研究现状及热点分析[J]. 中国血吸虫病防治杂志, 2018, 30(5): 571-574. DOI: 10.16250/j.32.1374.2018189.
[6] BÄCKHED F, LEY R E, SONNENBURG J L, et al. Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307(5717): 1915-1920. DOI: 10.1126/science.1104816.
[7] FAN P X, BIAN B L, TENG L, et al. Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation[J]. The ISME Journal, 2020, 14(1): 302-317. DOI: 10.1038/s41396-019-0529-2.
[8] ZHOU K Q, QIN J Q, PANG H F, et al. Comparison of the composition and function of gut microbes between adult and juvenile Cipangopaludina chinensis in the rice snail system[J]. PeerJ, 2022, 10(5): e13042. DOI: 10.7717/peerj.13042.
[9] HUANG G P, WANG L, LI J, et al. Seasonal shift of the gut microbiome synchronizes host peripheral circadian rhythm for physiological adaptation to a low-fat diet in the giant panda[J]. Cell Reports, 2022, 38(3): 110203. DOI: 10.1016/j.celrep.2021.110203.
[10] GUTIERREZ LOPEZ D E, LASHINGER L M, WEINSTOCK G M, et al. Circadian rhythms and the gut microbiome synchronize the host's metabolic response to diet[J]. Cell Metabolism, 2021, 33(5): 873-887. DOI: 10.1016/j.cmet.2021.03.015.
[11] CHEN L, LI S X, XIAO Q,et al. Composition and diversity of gut microbiota in Pomacea canaliculata in sexes and between developmental stages[J]. BMC Microbiology, 2021, 21(1): 200. DOI: 10.1186/s12866-021-02259-2.
[12] 胡宗福, 常杰, 佟庆, 等. 高通量测序方法分析两种草食性淡水螺肠道菌群多样性[J]. 生物工程学报, 2020, 36(12): 2622-2634. DOI: 10.13345/j.cjb.200322.
[13] LI L H, LV S, LU Y, et al. Spatial structure of the microbiome in the gut of Pomacea canaliculata[J]. BMC Microbiology, 2019, 19(1): 273. DOI: 10.1186/s12866-019-1661-x.
[14] LINDSAY E C, METCALFE N B, LLEWELLYN M S, et al. The potential role of the gut microbiota in shaping host energetics and metabolic rate[J]. Journal of Animal Ecology, 2020, 89(11): 2415-2426. DOI: 10.1111/1365-2656.13327.
[15] KAUR H, ALI S A, YAN F, et al. Interactions between the gut microbiota-derived functional factors and intestinal epithelial cells-implication in the microbiota-host mutualism[J]. Frontiers in Immunology, 2022(13): 1006081. DOI: 10.3389/fimmu.2022.1006081.
[16] XU B, XU W J, LI J J, et al. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation[J]. BMC Genomics, 2015, 16(1): 174. DOI: 10.1186/s12864-015-1378-7.
[17] 梁琍, 姚俊杰, 周路, 等. 锦江河螺类资源调查[J]. 铜仁学院学报, 2012, 14(6): 139-143. DOI: 10.3969/j.issn.1673-9639.2012.06.035.
[18] 梁敏, 陶虎春, 倪晋仁, 等. 石田螺处理城市剩余污泥试验[J]. 环境科学研究, 2010, 23(9): 1180-1184.
[19] GUO M J, WU F H, HAO G G,et al. Bacillus subtilis improves immunity and disease resistance in rabbits[J]. Frontiers in Immunology, 2017, 8: 354. DOI: 10.3389/fimmu.2017.00354.
[20] GAIKWAD S S, SHOUCHE Y S, GADE W N, et al. Deep sequencing reveals highly variable gut microbial composition of invasive fish Mossambicus Tilapia (Oreochromis mossambicus) collected from two different habitats[J]. Indian Journal of Microbiology, 2017, 57(2): 235-240. DOI: 10.1007/s12088-017-0641-9.
[21] BANKERS L, DAHAN D, NEIMAN M, et al. Invasive freshwater snails form novel microbial relationships[J]. Evolutionary Applications, 2020, 14(3): 770-780. DOI: 10.1111/eva.13158.
[22] LI H, LI T T, BEASLEY D E, et al. Diet diversity is associated with beta but not alpha diversity of pika gut microbiota[J]. Frontiers in Microbiology, 2016, 7: 1169. DOI: 10.3389/fmicb.2016.01169.
[23] XUN W B, LIU Y P, LI W, et al. Specialized metabolic functions of keystone taxa sustain soil microbiome stability[J]. Microbiome, 2021, 9(1): 35. DOI: 10.1186/s40168-020-00985-9.
[24] HU Z F, CHEN X, CHANG J, et al. Compositional and predicted functional analysis of the gut microbiota of Radix auricularia (Linnaeus) via high-throughput illumina sequencing[J]. PeerJ, 2018, 6: e5537. DOI: 10.7717/peerj.5537. eCollection2018.
[25] HU Z F, TONG Q, CHANG J,et al. Gut bacterial communities in the freshwater snail Planorbella trivolvis and their modification by a non-herbivorous diet[J]. PeerJ, 2021, 9: e10716. DOI: 10.7717/peerj.10716.eCollection2021.
[26] RIMOLDI S, TEROVA G, ASCIONE C, et al. Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources[J]. PLoS One, 2018, 13(3): e0193652. DOI: 10.1371/journal.pone.0193652.
[27] CHEN Y H, PENNER G B, LI M T, et al. Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet[J]. Applied and Environmental Microbiology, 2011, 77(16): 5770-5781. DOI: 10.1128/AEM.00375-11.
[28] SHIN N R, WHON T W, BAE J W, et al. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends in Biotechnology, 2015, 33(9): 496-503. DOI: 10.1016/j.tibtech.2015.06.011.
[29] LI Y F, YANG N, LIANG X, et al. Elevated seawater temperatures decrease microbial diversity in the gut of Mytilus coruscus[J]. Frontiers in Physiology, 2018, 9: 839. DOI: 10.3389/fphys.2018.00839.
[30] WEXLER A G, GOODMAN A L. An insider's perspective: Bacteroides as a window into the microbiome[J]. Nature Microbiology, 2017, 2:17026. DOI: 10.1038/nmicrobiol.2017.26.
[31] JIANG Y, XIE C X, YANG G M, et al. Cellulase-producing bacteria of Aeromonas are dominant and indigenous in the gut of Ctenopharyngodon idellus (Valenciennes)[J]. Aquaculture Research, 2011, 42(4): 499-505. DOI: 10.1111/j.1365-2109.2010.02645.x.
[32] WU Z Q, JIANG C, LING F, et al. Effects of dietary supplementation of intestinal autochthonous bacteria on the innate immunity and disease resistance of grass carp (Ctenopharyngodon idellus)[J]. Aquaculture, 2015, 438: 105-114. DOI: 10.1016/j.aquaculture.2014.12.041.
[33] TSUCHIYA C, SAKATA T, SUGITA H,et al. Novel ecological niche of Cetobacterium somerae an anaerobic bacterium in the intestinal tracts of freshwater fish[J]. Letters in Applied Microbiology, 2008, 46(1): 43-48. DOI: 10.1111/j.1472-765X.2007.02258.x.
[34] TANAKA R, OOTSUBO M, SAWABE T, et al. Biodiversity and in situ abundance of gut microflora of abalone (Haliotis discus Hannai) determined by culture-independent techniques[J]. Aquaculture, 2004, 241(1/2/3/4): 453-463. DOI: 10.1016/j.aquaculture.2004.08.032.
[35] HOLBEN W E, WILLIAMS P, GILBERT M A, et al. Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon[J]. Microbial Ecology, 2002, 44(2): 175-185. DOI: 10.1007/s00248-002-1011-6.
[36] RAZIN S, YOGEV D, NAOT Y, et al. Molecular biology and pathogenicity of mycoplasmas[J]. Microbiology and Molecular Biology Reviews: MMBR, 1998, 62(4): 1094-1156. DOI: 10.1128/MMBR.62.4.1094-1156.1998.
[37] SOMMER F, BÄCKHED F. The gut microbiota:masters of host development and physiology[J]. Nature Reviews Microbiology, 2013, 11(4): 227-238. DOI: 10.1038/nrmicro2974.
[38] JOYNSON R, PRITCHARD L, OSEMWEKHA E, et al. Metagenomic analysis of the gut microbiome of the common black slug Arion ater in search of novel lignocellulose degrading enzymes[J]. Frontiers Microbiology, 2017, 8: 2181. DOI: 10.3389/fmicb.2017.02181.
[39] YANG Y, YANG J, WU W M, et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. role of gut microorganisms[J]. Environmental Science & Technology, 2015, 49(20): 12087-12093. DOI: 10.1021/acs.est.5b02663.
[1] 肖咪云, 阮楚晋, 陈寿昆, 刘裕华, 陆祖军. 一株产天然蓝色素细菌的分离鉴定[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 131-138.
[2] 张小敏, 林勇, 宾石玉, 余艳玲, 曾兰, 钟丹丹, 张永德. 基于线粒体16S rDNA基因序列沼虾属的系统发育研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 133-140.
[3] 王培, 曹建华, 宋德贵, 辜澜涛, 董研玲. 一株产海因酶菌种的筛选与鉴定[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 119-124.
[4] 吴超, 钟一文. 蛋白质功能预测的蚁群优化算法[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 136-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[2] 施慧露, 莫燕华, 骆海玉, 马姜明. 檵木乙酸乙酯萃取物抑菌活性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 1 -8 .
[3] 贺青, 李栋, 罗思源, 贺寓东, 李彪, 王强. 超宽带里德堡原子天线技术研究进展[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 1 -19 .
[4] 黄仁慧, 张锐锋, 文晓浩, 闭金杰, 黄守麟, 李廷会. 基于复数协方差卷积神经网络的运动想象脑电信号解码方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 43 -56 .
[5] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1 -14 .
[6] 黎宗孝, 张健, 罗鑫悦, 赵嶷飞, 卢飞. 基于K-means和Adam-LSTM的机场进场航迹预测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 15 -23 .
[7] 宋铭楷, 朱成杰. 基于H-WOA-GWO和区段修正策略的配电网故障定位研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 24 -37 .
[8] 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58 -68 .
[9] 李志欣, 匡文兰. 结合互注意力空间自适应和特征对集成判别的细粒度图像分类[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 69 -82 .
[10] 石天怡, 南新元, 郭翔羽, 赵濮, 蔡鑫. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83 -96 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发