|
|
广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (1): 102-109.doi: 10.16088/j.issn.1001-6600.2025012401
姚洁, 王勤龙*
YAO Jie, WANG Qinlong*
摘要: 本文研究一类三维系统在高阶奇点处发生的退化Hopf分岔。基于中心流形定理,给出一种直接计算奇点量的形式级数方法,避免将原三维系统转化为平面约化方程的繁琐过程,该算法对应的线性递推公式易于执行。具体研究一类四次系统,解决其高阶奇点的中心与退化Hopf分岔环性问题。
中图分类号: O175.1
| [1] 张芷芬, 丁同仁,黄文社,等. 微分方程定性理论[M]. 北京: 科学出版社, 1985. [2] 刘一戎, 李继彬. 平面向量场的若干经典问题[M]. 北京: 科学出版社, 2010: 1-29. [3] 刘一戎. 一类高次奇点与无穷远点的中心焦点理论[J]. 中国科学:A辑, 2001, 31(1): 37-48. DOI: 10.3321/j.issn:1006-9232.2001.01.006. [4] 黄文韬, 古结平, 王勤龙. 三维微分系统的极限环与等时中心[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 104-126. DOI: 10.16088/j.issn.1001-6600.2022020702. [5] 黄文韬, 王勤龙, 杜超雄. 三维微分系统中心流形上的等时中心[J]. 数学学报(中文版), 2024, 67(5): 995-1008. DOI: 10.12386/B20210641. [6] GUO L G, YU P, CHEN Y F. Twelve limit cycles in 3D quadratic vector fields with Z3 symmetry[J]. International Journal of Bifurcation and Chaos, 2018, 28(11): 1850139. DOI: 10.1142/s0218127418501390. [7] HUANG W T, WANG Q L, CHEN A Y. Hopf bifurcation and the centers on center manifold for a class of three-dimensional Circuit system[J]. Mathematical Methods in the Applied Sciences, 2020, 43(4): 1988-2000. DOI: 10.1002/mma.6026. [8] LU J P, WANG C Y, HUANG W T, et al. Local bifurcation and center problem for a more generalized Lorenz system[J]. Qualitative Theory of Dynamical Systems, 2022, 21(4): 96. DOI: 10.1007/s12346-022-00629-3. [9] YU P, HAN M A. Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation[J]. Applied Mathematics Letters, 2015, 44: 17-20. DOI: 10.1016/j.aml.2014.12.010. [10] ROMANOVSKI V G, SHAFER D S. Centers and limit cycles in polynomial systems of ordinary differential equations[J]. Advanced Studies in Pure Mathematics, 2016, 68: 267-373. DOI: 10.2969/aspm/06810267. [11] WANG Q L, LIU Y R, CHEN H B. Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems[J]. Bulletin Des SciencesMathématiques, 2010, 134(7): 786-798. DOI: 10.1016/j.bulsci.2009.12.001. [12] GARCÍA I A. Integrable zero-Hopf singularities and three-dimensionalcentres[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2018, 148(2): 327-340. DOI: 10.1017/s0308210517000026. [13] ZENG B, YU P. Analysis of zero-Hopf bifurcation in tworössler systems using normal form theory[J]. International Journal of Bifurcation and Chaos, 2020, 30(16): 2030050. DOI: 10.1142/s0218127420300505. [14] WANG Q L, HUANG W T, LIU Y R. Multiple limit cycles bifurcation from the degenerate singularity for a class of three-dimensional systems[J]. Acta Mathematicae Applicatae Sinica, English Series, 2016, 32(1): 73-80. DOI: 10.1007/s10255-015-0510-4. [15] PESSOA C, QUEIROZ L. Nilpotent centers from analytical systems on center manifolds[J]. Journal of Mathematical Analysis and Applications, 2023, 525(1): 127120. DOI: 10.1016/j.jmaa.2023.127120. [16] LLIBRE J, WU H. Hopf bifurcation for degenerate singular points of multiplicity 2n-1 in dimension 3[J]. Bulletin Des Sciences Mathématiques, 2008, 132(3): 218-231. DOI: 10.1016/j.bulsci.2007.01.003. [17] GARCÍA I A. Small amplitude periodic orbits in three-dimensional quadratic vector fields witha zero-Hopf singularity[J]. Journal of Dynamics and Differential Equations, 2024, 36(2): 1325-1346. DOI: 10.1007/s10884-022-10208-4. [18] CARR J. Applications of centre manifold theory[M]. New York: Springer, 1981: 1-10. |
| [1] | 刘桔坤, 黄文韬, 刘宏普. 一类三维三次系统极限环的新下界[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 109-115. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |