|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (5): 41-51.doi: 10.16088/j.issn.1001-6600.2024090603
商立群*, 贾丹铭, 安迪, 王俊昆
SHANG Liqun*, JIA Danming, AN Di, WANG Junkun
摘要: 电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition, CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始数据进行分解,再利用排列熵(permutation entropy, PE)阈值进行分量分流。高频信号采用双向长短期记忆网络(bidirectional long short-term memory, BiLSTM)预测,低频信号则通过混合核极限学习机(hybrid kernel extreme learning machine, HKELM)并结合雪消融优化算法(snow ablation optimizer, SAO)进行优化预测。最终,各分量预测结果叠加得到综合预测值。通过实例分析,模型的均方根误差、平均绝对误差和平均绝对百分比误差分别为61.61 kW、43.91 kW和0.38%,显著优于传统模型。实验结果表明,该模型充分发掘数据内在特征、结合各方法预测优势,在超短期负荷预测中具有较高的精度。
中图分类号: TM 715
| [1] 康重庆, 夏清, 张伯明. 电力系统负荷预测研究综述与发展方向的探讨[J]. 电力系统自动化, 2004, 28(17): 1-11. DOI: 10.3321/j.issn:1000-1026.2004.17.001. [2] AHMAD N, GHADI Y, ADNAN M, et al. Load forecasting techniques for power system: research challenges and survey[J]. IEEE Access, 2022, 10: 71054-71090. DOI: 10.1109/ACCESS.2022.3187839. [3] 杨佳泽, 王灿, 王增平. 新型电力系统背景下的智能负荷预测算法研究综述[J]. 华北电力大学学报(自然科学版), 2025, 52(3): 54-67. [4] 刘杰, 从兰美, 夏远洋, 等. 基于DBO-VMD和IWOA-BILSTM神经网络组合模型的短期电力负荷预测[J]. 电力系统保护与控制, 2024, 52(8): 123-133. DOI: 10.19783/j.cnki.pspc.231402. [5] 杨维熙, 刘勇, 舒勤. 基于补充集合经验模态分解的短期负荷预测模型[J]. 电网技术, 2022, 46(9): 3615-3623. DOI: 10.13335/j.1000-3673.pst.2021.2583. [6] 滕陈源, 丁逸超, 张有兵, 等. 基于VMD-Informer-BiLSTM模型的超短期光伏功率预测[J]. 高电压技术, 2023, 49(7): 2961-2971. DOI: 10.13336/j.1003-6520.hve.20222003. [7] 李俊良, 焦润海, 王双坤, 等. 一种基于误差在线更新的集成负荷预测模型[J]. 中国电机工程学报, 2023, 43(4): 1402-1413. DOI: 10.13334/j.0258-8013.pcsee.212794. [8] BAHRAMI S, HOOSHMAND R A, PARASTEGARI M. Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm[J]. Energy, 2014, 72: 434-442. DOI: 10.1016/j.energy.2014.05.065. [9] 商立群, 李洪波, 侯亚东, 等. 基于VMD-ISSA-KELM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2022, 50(21): 138-148. DOI: 10.19783/j.cnki.pspc.220140. [10] 蔡曜, 司玉辉, 王玉琢, 等. 挠性陀螺EMD-ARIMA漂移模型设计与应用[J]. 北京航空航天大学学报, 2024, 50(11): 3434-3444. DOI: 10.13700/j.bh.1001-5965.2022.0871. [11] 邵必林, 纪丹阳. 基于VMD-SE的电力负荷分量的多特征短期预测[J]. 中国电力, 2024, 57(4): 162-170. [12] 马志侠, 张林鍹, 邱朝洁, 等. 基于CEEMD-SSA-LSTM的园区综合能源系统两阶段优化调度[J]. 高电压技术, 2023, 49(4): 1430-1440. DOI: 10.13336/j.1003-6520.hve.20221303. [13] 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21-33. DOI: 10.16088/j.issn.1001-6600.2020070101. [14] HOCHREITER S,SCHMIDHUBER J. Long Short-Term Memory[J]. Neural Computation,1997,9(8),1735-1780. DOI: 10.1162/neco.1997.9.8.1735. [15] LIU Z S, YANG J F. Research on short-term load forecasting based on GWO-BILSTM[J]. Journal of Physics: Conference Series, 2022, 2290(1): 012100. DOI: 10.1088/1742-6596/2290/1/012100. [16] RAFIEI M, NIKNAM T, AGHAEI J, et al. Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 6961-6971. DOI: 10.1109/TSG.2018.2807845. [17] SHARIATI M, MAFIPOUR M S, GHAHREMANI B, et al. A novel hybrid extreme learning machine-grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement[J]. Engineering with Computers, 2022, 38(1): 757-779. DOI: 10.1007/s00366-020-01081-0. [18] 王延峰, 曹育晗, 孙军伟. 基于多策略改进金豺算法优化LSTM的短期电力负荷预测[J]. 电力系统保护与控制, 2024, 52(14): 95-102. DOI: 10.19783/j.cnki.pspc.231431. [19] 商立群, 黄辰浩, 侯亚东, 等. 采用特征优选和优化深层核极限学习机的短期风电功率预测[J]. 西安交通大学学报, 2023, 57(1): 66-77. DOI: 10.7652/xjtuxb202301007. [20] DENG L Y, LIU S Y. Snow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering design[J]. Expert Systems with Applications, 2023, 225: 120069. DOI: 10.1016/j.eswa.2023.120069. [21] SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306. DOI: 10.1016/j.physd.2019.132306. [22] 商立群, 李洪波, 侯亚东, 等. 基于特征选择和优化极限学习机的短期电力负荷预测[J]. 西安交通大学学报, 2022, 56(4): 165-175. DOI: 10.7652/xjtuxb202204018. [23] SU H, ZHAO D, HEIDARI A A, et al. RIME: a physics-based optimization[J]. Neurocomputing, 2023, 532: 183-214. DOI: 10.1016/j.neucom.2023.02.010. |
| [1] | 刘颂凯, 曾羽聪, 张磊, 李彦彰, 王秋杰, 刘龙成, 陈萍, 赵文博. 基于深度极限学习机的暂态稳定预防控制方法[J]. 广西师范大学学报(自然科学版), 2025, 43(5): 64-74. |
| [2] | 陈禹, 陈磊, 张怡, 张志瑞. 基于QMD-LDBO-BiGRU的风速预测模型[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 38-57. |
| [3] | 许伦辉, 苏楠, 骈宇庄, 林培群. 基于优化极限学习机的公交行程时间预测方法[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 64-77. |
| [4] | 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21-33. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |