广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (5): 16-40.doi: 10.16088/j.issn.1001-6600.2024082601

• 综述 • 上一篇    下一篇

光激活前药的抗肿瘤研究进展

谢文彬1,2, 金俊飞1,2, 陈振锋3, 卢幸1,2*   

  1. 1.广西肝脏损伤与修复分子医学重点实验室(桂林医学院附属医院),广西 桂林 541001;
    2.广西神经鞘脂代谢相关疾病基础研究重点实验室(桂林医学院附属医院),广西 桂林 541001;
    3.省部共建药用资源化学与药物分子工程国家重点实验室(广西师范大学), 广西 桂林 541004
  • 收稿日期:2024-08-26 修回日期:2024-09-14 出版日期:2025-09-05 发布日期:2025-08-05
  • 通讯作者: 卢幸(1989—),男,安徽芜湖人,桂林医学院附属医院副研究员,博士。E-mail: xinglu@glmc.edu.cn
  • 基金资助:
    国家自然科学基金(82304305);广西自然科学基金(2024GXNSFAA010286);广西科技厅中央引导地方科技发展资金项目(桂科ZY21195024)

Advances of Photoactivated Prodrugs in Anti-Tumor Therapy

XIE Wenbin1,2, JIN Junfei1,2, CHEN Zhenfeng3, LU Xing1,2*   

  1. 1. Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair (Affiliated Hospital of Guilin Medical University), Guilin Guangxi 541001, China;
    2. Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases (Affiliated Hospital of Guilin Medical University), Guilin Guangxi 541001, China;
    3. State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2024-08-26 Revised:2024-09-14 Online:2025-09-05 Published:2025-08-05

摘要: 癌症严重威胁人类生命健康,化疗作为常用的癌症治疗手段,由于其对正常组织的无差别杀伤,常引起严重的毒副作用。光激活化疗是降低药物毒副作用的有效方式之一,它是利用光激活前药可在特定部位被光照激活并释放原药的原理,实现针对癌组织精准靶向,最大程度降低抗肿瘤剂对正常组织的毒副作用。本文综述光激活前药的基本结构、响应策略、常见的光脱保护基团以及近年来这类前药在抗肿瘤研究领域取得的重要进展,并根据抗癌前药作用机制的不同,依次从细胞毒类、分子靶向类、免疫类及激素类抗癌前药几方面展开,旨在为癌症精准治疗提供新方案。

关键词: 光激活, 前药, 光脱保护基团, 药物释放, 抗肿瘤

Abstract: Cancer is seriously threatening human health. Chemotherapy, as a common treatment for cancer, often causes serious toxic side effects due to its indiscriminate killing of normal cells. Photo-activated chemotherapy (PACT) is one of the effective methods to reduce the toxic and side effects of drugs. It combines photoremovable groups (PPGs) with inhibitor prodrugs to form photoactivated inhibitor prodrugs, which can be activated by light at specific sites and release inhibitor, so as to achieve accurate targeting of cancer tissues and minimize the toxic and side effects of anti-tumor agents on normal tissues. This review comprehensively covers the basic structures and strategies of photoactivated prodrugs, common PPGs and the important advances for anti-tumor research in recent years. According to the different mechanism of action of these prodrugs, this review introduces cytotoxic, molecular targeting, immune and hormone anti-tumor prodrugs in turn, aiming to provide a new scheme for the precision treatment of cancer.

Key words: photo-activated, prodrugs, photoremovable protecting groups, drugs release, anti-tumor

中图分类号:  R730.53

[1] BREGLIO A M, RUSHEEN A E, SHIDE E D, et al. Cisplatin is retained in the cochlea indefinitely following chemotherapy[J]. Nature Communications, 2017, 8(1): 1654. DOI: 10.1038/s41467-017-01837-1.
[2] SAUNDERS N A, SIMPSON F, THOMPSON E W, et al. Role ofintratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives[J]. EMBO Molecular Medicine, 2012, 4(8): 675-684. DOI: 10.1002/emmm.201101131.
[3] LAWRENCE D S. The preparation and in vivo applications of caged peptides and proteins[J]. Current Opinion in Chemical Biology, 2005, 9(6): 570-575. DOI: 10.1016/j.cbpa.2005.09.002.
[4] PELLICCIOLI A P, WIRZ J. Photoremovable protecting groups: reaction mechanisms and applications[J]. Photochemical & Photobiological Sciences, 2002, 1(7): 441-458. DOI: 10.1039/b200777k.
[5] WEINSTAIN R, SLANINA T, KAND D, et al. Visible-to-NIR-light activated release: from small molecules to nanomaterials[J]. Chemical Reviews, 2020, 120(24): 13135-13272. DOI: 10.1021/acs.chemrev.0c00663.
[6] KLÁN P, ŠOLOMEK T, BOCHET C G, et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy[J]. Chemical Reviews, 2013, 113(1): 119-191. DOI: 10.1021/cr300177k.
[7] KIM K, PARK H, LIM K M. Phototoxicity: its mechanism and animal alternative test methods[J]. Toxicological Research, 2015, 31(2): 97-104. DOI: 10.5487/TR.2015.31.2.097.
[8] GLICKMAN R D. Ultraviolet phototoxicity to the retina[J]. Eye & Contact Lens: Science & Clinical Practice, 2011, 37(4): 196-205. DOI: 10.1097/icl.0b013e31821e45a9.
[9] LIM Y T, KIM S, NAKAYAMA A, et al. Selection of quantum dot wavelengths for biomedical assays and imaging[J]. Molecular Imaging, 2003, 2(1): 50-64. DOI: 10.1162/15353500200302163.
[10] WEISSLEDER R. A clearer vision for in vivo imaging[J]. Nature Biotechnology, 2001, 19(4): 316-317. DOI: 10.1038/86684.
[11] JUZENAS P, JUZENIENE A, KAALHUS O, et al. Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo[J]. Photochemical & Photobiological Sciences, 2002, 1(10): 745-748. DOI: 10.1039/b203459j.
[12] ECKARDT T, HAGEN V, SCHADE B, et al. Deactivation behavior and excited-state properties of (coumarin-4-yl)methyl derivatives. 2. Photocleavage of selected (coumarin-4-yl)methyl-caged adenosine cyclic 3′, 5′-monophosphates with fluorescence enhancement[J]. Journal of Organic Chemistry, 2002, 67(3): 703-710. DOI: 10.1021/jo010692p.
[13] WANG X H, WANG X Y, JIN S X, et al. Stimuli-responsive therapeutic metallodrugs[J]. Chemical Reviews, 2019, 119(2): 1138-1192. DOI: 10.1021/acs.chemrev.8b00209.
[14] 吴睿麒, 梁晓龙. 超声介导药物递送研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 271-285. DOI: 10.16088/j.issn.1001-6600.2022012804.
[15] ZHOU Z J, ZHANG L, ZHANG Z R, et al. Advances in photosensitizer-related design for photodynamic therapy[J]. Asian Journal of Pharmaceutical Sciences, 2021, 16(6): 668-686. DOI: 10.1016/j.ajps.2020.12.003.
[16] WILSON W R, HAY M P. Targeting hypoxia in cancer therapy[J]. Nature Reviews Cancer, 2011, 11(6): 393-410. DOI: 10.1038/nrc3064.
[17] HORBERT R, PINCHUK B, DAVIES P, et al. Photoactivatable prodrugs of antimelanoma agent vemurafenib[J]. ACS Chemical Biology, 2015, 10(9): 2099-2107. DOI: 10.1021/acschembio.5b00174.
[18] CHEN Y J, BAI L J, ZHANG P, et al. The development of Ru(II)-based photoactivated chemotherapy agents[J]. Molecules, 2021, 26(18): 5679. DOI: 10.3390/molecules26185679.
[19] KAYE W. Near-infrared spectroscopy I. Spectral identification and analytical applications[J].Spectrochimica Acta, 1954, 6(4): 257-287. DOI: 10.1016/0371-1951(54)80011-7.
[20] WAGNER P J, KLÁN P. Intramolecular triplet energy transfer in flexible molecules: electronic, dynamic, and structural aspects[J]. Journal of the American Chemical Society, 1999, 121(41): 9626-9635. DOI: 10.1021/ja990224l.
[21] FALVEY D E, SUNDARARAJAN C. Photoremovable protecting groups based on electron transfer chemistry[J]. Photochemical & Photobiological Sciences, 2004, 3(9): 831-838. DOI: 10.1039/b406866a.
[22] ORMOND A B, FREEMAN H S. Dye sensitizers for photodynamic therapy[J]. Materials, 2013, 6(3): 817-840. DOI: 10.3390/ma6030817.
[23] SHEMBEKAR V R, CHEN Y L, CARPENTER B K, et al. A protecting group for carboxylic acids that can be photolyzed by visible light[J]. Biochemistry, 2005, 44(19): 7107-7114. DOI: 10.1021/bi047665o.
[24] HUANG Y, DONG R J, ZHU X Y, et al. Photo-responsive polymeric micelles[J]. Soft Matter, 2014, 10(33): 6121-6138. DOI: 10.1039/c4sm00871e.
[25] MOFFAT K L, GOON K, MOUTOS F T, et al. Compositecellularized structures created from an interpenetrating polymer network hydrogel reinforced by a 3D woven scaffold[J]. Macromolecular Bioscience, 2018, 18(10): e1800140. DOI: 10.1002/mabi.201800140.
[26] HANSEN M J, VELEMA W A, LERCH M M, et al. Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems[J]. Chemical Society Reviews, 2015, 44(11): 3358-3377. DOI: 10.1039/c5cs00118h.
[27] RUSSELL A G, RAGOUSSI M E, RAMALHO R, et al. Alpha-carboxy-6-nitroveratryl: a photolabile protecting group for carboxylic acids[J]. Journal of Organic Chemistry, 2010, 75(13): 4648-4651. DOI: 10.1021/jo100783v.
[28] GIVENS R S, PARK C H. p-Hydroxyphenacyl ATP1: a new phototrigger[J]. Tetrahedron Letters, 1996, 37(35): 6259-6262. DOI: 10.1016/0040-4039(96)01390-1.
[29] GIVENS R S, RUBINA M, WIRZ J. Applications of p-hydroxyphenacyl(pHP) and coumarin-4-ylmethyl photoremovable protecting groups[J]. Photochemical & Photobiological Sciences, 2012, 11(3): 472-488. DOI: 10.1039/c2pp05399c.
[30] PARK C H, GIVENS R S. New photoactivatedprotecting groups. 6. p-hydroxyphenacyl: a phototrigger for chemical and biochemical probes[J]. Journal of the American Chemical Society, 1997, 119(10): 2453-2463. DOI: 10.1021/ja9635589.
[31] GIVENS R S, WEBER J F W, JUNG A H, et al. Newphotoprotecting groups: desyl and p-hydroxyphenacyl phosphate and carboxylate esters[J]. Methods in Enzymology, 1998, 291: 1-29. DOI: 10.1016/S0076-6879(98)91004-7.
[32] LUO X J, WU J B, LV T, et al. Synthesis and evaluation of novel O2-derived diazeniumdiolates as photochemical and real-time monitoring nitric oxide delivery agents[J]. Organic Chemistry Frontiers, 2017, 4(12): 2445-2449. DOI: 10.1039/C7QO00695K.
[33] GIVENS R S, RUBINA M, WIRZ J. Applications of p-hydroxyphenacyl(pHP) and coumarin-4-ylmethyl photoremovable protecting groups[J]. Photochemical & Photobiological Sciences, 2012, 11(3): 472-488. DOI: 10.1039/c2pp05399c.
[34] SCHADE B, HAGEN V, SCHMIDT R, et al. Deactivation behavior and excited-state properties of (coumarin-4-yl) methyl derivatives. 1. photocleavage of (7-methoxycoumarin-4-yl) methyl-caged acids with fluorescence enhancement[J]. The Journal of Organic Chemistry, 1999, 64(25): 9109-9117. DOI: 10.1021/jo9910233.
[35] FURUTA T, WANG SS, DANTZKER J L, et al. Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1193-1200. DOI: 10.1073/pnas.96.4.1193.
[36] TANG X J, WU Y Y, ZHAO R, et al. Photorelease of pyridines using a metal-free photoremovable protecting group[J]. Angewandte Chemie International Edition, 2020, 59(42): 18386-18389. DOI: 10.1002/anie.202005310.
[37] SENDA N, MOMOTAKE A, ARAI T. Synthesis and photocleavage of 7-[{Bis(carboxymethyl) amino} coumarin-4-yl] methyl-caged neurotransmitters[J]. Bulletin of the Chemical Society of Japan, 2007, 80(12): 2384-2388. DOI: 10.1246/bcsj.80.2384.
[38] FURUTA T, TAKEUCHI H, ISOZAKI M, et al.Bhc-cNMPs as either water-soluble or membrane-permeant photoreleasable cyclic nucleotides for both one-and two-photon excitation[J]. Chembiochem, 2004, 5(8): 1119-1128. DOI: 10.1002/cbic.200300814.
[39] HE J L, HE Y L, WU X, et al. Mesoporous silica-encapsulated gold nanorods for drug delivery/release and two-photon excitation fluorescence imaging to guide synergistic phototherapy and chemotherapy[J]. ACS Applied Bio Materials, 2023, 6(9): 3433-3440. DOI: 10.1021/acsabm.3c00132.
[40] SCHMIDT R, GEISSLER D, HAGEN V, et al. Mechanism of photocleavage of (coumarin-4-yl) methyl esters[J]. The Journal of Physical Chemistry A, 2007, 111(26): 5768-5774. DOI: 10.1021/jp071521c.
[41] DAVIS M J, KRAGOR C H, REDDIE K G, et al. Substituent effects on the sensitivity of a quinoline photoremovable protecting group to one- and two-photon excitation[J]. Journal of Organic Chemistry, 2009, 74(4): 1721-1729. DOI: 10.1021/jo802658a.
[42] ZHU Y, PAVLOS C M, TOSCANO J P, et al. 8-Bromo-7-hydroxyquinoline as a photoremovable protecting group for physiological use: mechanism and scope[J]. Journal of the American Chemical Society, 2006, 128(13): 4267-4276. DOI: 10.1021/ja0555320.
[43] KOSOWER N S, KOSOWER E M, NEWTON G L, et al.Bimane fluorescent labels: labeling of normal human red cells under physiological conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(7): 3382-3386. DOI: 10.1073/pnas.76.7.3382.
[44] CHAUDHURI A, VENKATESH Y, BEHARA K K, et al. Bimane: a visible light induced fluorescent photoremovable protecting group for the single and dual release of carboxylic and amino acids[J]. Organic Letters, 2017, 19(7): 1598-1601. DOI: 10.1021/acs.orglett.7b00416.
[45] BERTRAND B, PASSADOR K, GOZE C, et al. Metal-based BODIPY derivatives as multimodal tools for life sciences[J]. Coordination Chemistry Reviews, 2018, 358: 108-124. DOI: 10.1016/j.ccr.2017.12.007.
[46] SHRESTHA P, KAND D, WEINSTAIN R, et al.Meso-methyl BODIPY photocages: mechanisms, photochemical properties, and applications[J]. Journal of the American Chemical Society, 2023, 145(32): 17497-17514. DOI: 10.1021/jacs.3c01682.
[47] PETERSON J A, WIJESOORIYA C, GEHRMANN E J, et al. Family of BODIPY photocages cleaved by single photons of visible/near-infrared light[J]. Journal of the American Chemical Society, 2018, 140(23): 7343-7346. DOI: 10.1021/jacs.8b04040.
[48] LABRA-VÁZQUEZ P, FLORES-CRUZ R, GALINDO-HERNÁNDEZ A, et al. Tuning the cell uptake and subcellular distribution in BODIPY-carboranyl dyads: an experimental and theoretical study[J]. Chemistry, 2020, 26(69): 16530-16540. DOI: 10.1002/chem.202002600.
[49] IMBERTI C, ZHANG P Y, HUANG H Y, et al.New designs for phototherapeutic transition metal complexes[J]. Angewandte Chemie International Edition, 2020, 59(1): 61-73. DOI: 10.1002/anie.201905171.
[50] KNOLL J D, ALBANI B A, TURRO C. New Ru(II) complexes for dual photoreactivity: ligand exchange and 1O2 generation[J]. Accounts of Chemical Research, 2015, 48(8): 2280-2287. DOI: 10.1021/acs.accounts.5b00227.
[51] ZAYAT L, FILEVICH O, BARALDO L M, et al. Ruthenium polypyridylphototriggers: from beginnings to perspectives[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371(1995): 20120330. DOI: 10.1098/rsta.2012.0330.
[52] HOGENKAMP H P. The photolysis of methylcobalamin[J]. Biochemistry, 1966, 5(2): 417-422. DOI: 10.1021/bi00866a005.
[53] SHELL T A, LAWRENCE D S. Vitamin B12: a tunable, long wavelength, light-responsive platform for launching therapeutic agents[J]. Accounts of Chemical Research, 2015, 48(11): 2866-2874. DOI: 10.1021/acs.accounts.5b00331.
[54] SHELL T A, SHELL J R, RODGERS Z L, et al. Tunable visible and near-IR photoactivation of light-responsive compounds by using fluorophores as light-capturing antennas[J].Angewandte Chemie International Edition, 2014, 53(3): 875-878. DOI: 10.1002/anie.201308816.
[55] FEDORYSHIN LL, TAVARES A J, PETRYAYEVA E, et al. Near-infrared-triggered anticancer drug release from upconverting nanoparticles[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 13600-13606. DOI: 10.1021/am503039f.
[56] KOZLOWSKI P M, GARABATO B D, LODOWSKI P, et al. Photolytic properties of cobalamins: a theoretical perspective[J]. Dalton Transactions, 2016, 45(11): 4457-4470. DOI: 10.1039/C5DT04286K.
[57] BAGNATO J D, EILERS A L, HORTON R A, et al. Synthesis and characterization of a cobalamin-colchicine conjugate as a novel tumor-targeted cytotoxin[J]. Journal of Organic Chemistry, 2004, 69(26): 8987-8996. DOI: 10.1021/jo049953w.
[58] RENFREW A K, O′NEILL E S, HAMBLEY T W, et al. Harnessing the properties of cobalt coordination complexes for biological application[J]. Coordination Chemistry Reviews, 2018, 375: 221-233. DOI: 10.1016/j.ccr.2017.11.027.
[59] BANSAL S S, GOEL M, AQIL F, et al. Advanced drug delivery systems of curcumin for cancer chemoprevention[J]. Cancer Prevention Research, 2011, 4(8): 1158-1171. DOI: 10.1158/1940-6207.CAPR-10-0006.
[60] RENFREW A K, BRYCE N S, HAMBLEY T.Cobalt(III) chaperone complexes of curcumin: photoreduction, cellular accumulation and light-selective toxicity towards tumour cells[J]. Chemistry, 2015, 21(43): 15224-15234. DOI: 10.1002/chem.201502702.
[61] JANA A, VERMA B K, GARAI A, et al. Mitochondria localizing high-spin iron complexes of curcumin for photo-induced drug release[J].Inorganica Chimica Acta, 2018, 483: 571-578. DOI: 10.1016/j.ica.2018.09.008.
[62] DUAN M R, LENG S G, MAO P. Cisplatin in the era of PARP inhibitors and immunotherapy[J]. Pharmacology & Therapeutics, 2024, 258: 108642. DOI: 10.1016/j.pharmthera.2024.108642.
[63] BHARGAVA A, VAISHAMPAYAN U N.Satraplatin: leading the new generation of oral platinum agents[J]. Expert Opinion on Investigational Drugs, 2009, 18(11): 1787-1797. DOI: 10.1517/13543780903362437.
[64] ZHANG J Z, WEXSELBLATT E, HAMBLEY T W, et al.Pt(IV) analogs of oxaliplatin that do not follow the expected correlation between electrochemical reduction potential and rate of reduction by ascorbate[J]. Chemical Communications, 2012, 48(6): 847-849. DOI: 10.1039/c1cc16647f.
[65] YAO H Z, CHEN S, DENG Z Q, et al. BODI-Pt, a green-light-activatable and carboplatin-basedplatinum(IV) anticancer prodrug with enhanced activation and cytotoxicity[J]. Inorganic Chemistry, 2020, 59(16): 11823-11833. DOI: 10.1021/acs.inorgchem.0c01880.
[66] DENG Z Q, WANG N, LIU Y Y, et al. A photocaged, water-oxidizing, and nucleolus-targeted Pt(IV) complex with a distinct anticancer mechanism[J]. Journal of the American Chemical Society, 2020, 142(17): 7803-7812. DOI: 10.1021/jacs.0c00221.
[67] UPADHYAY A, NEPALIA A, BERA A, et al. Aplatinum(II) boron-dipyrromethene complex for cellular imaging and mitochondria-targeted photodynamic therapy in red light[J]. Chemistry, an Asian Journal, 2023, 18(21): e202300667. DOI: 10.1002/asia.202300667.
[68] RIVORY L P, ROBERT J. Pharmacology ofcamptothecin and its derivatives[J]. Bulletin Du Cancer, 1995, 82(4): 265-285.
[69] LIU P L, LI B W, ZHAN C Y, et al. A two-photon-activated prodrug for therapy and drug release monitoring[J]. Journal of Materials Chemistry B, 2017, 5(36): 7538-7546. DOI: 10.1039/c7tb01408b.
[70] RAI K R, PETERSON B L, APPELBAUM F R, et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia[J]. The New England Journal of Medicine, 2000, 343(24): 1750-1757. DOI: 10.1056/NEJM200012143432402.
[71] MADDOX J M, HORAN M, TAFESH L, et al. DECC (dexamethasone, etoposide, chlorambucil,lomustine) as an oral chemotherapy regimen in relapsed and refractory diffuse large B-cell lymphoma[J]. British Journal of Haematology, 2021, 192(3): e92-e94. DOI: 10.1111/bjh.17278.
[72] VERSCHOYLE R D, CARTHEW P, HOLLEY J L, et al. The comparative toxicity of chlorambucil and chlorambucil-spermidine conjugate to BALB/c mice[J]. Cancer Letters, 1994, 85(2): 217-222. DOI: 10.1016/0304-3835(94)90278-x.
[73] LIU M, MENG J Q, BAO W E, et al. Single-chromophore-based therapeutic agent enables green-light-triggeredchemotherapy and simultaneous photodynamic therapy to cancer cells[J]. ACS Applied Bio Materials, 2019, 2(7): 3068-3076. DOI: 10.1021/acsabm.9b00356.
[74] JORDAN M A, WILSON L. Microtubules as a target for anticancer drugs[J]. Nature Reviews Cancer, 2004, 4(4): 253-265. DOI: 10.1038/nrc1317.
[75] FROLOVA L V, MAGEDOV I V, ROMERO A E, et al. Exploring natural product chemistry and biology with multicomponent reactions. 5. Discovery of a novel tubulin-targeting scaffold derived from therigidin family of marine alkaloids[J]. Journal of Medicinal Chemistry, 2013, 56(17): 6886-6900. DOI: 10.1021/jm400711t.
[76] VAN RIXEL V H S, RAMU V, AUYEUNG A B, et al. Photo-uncaging of a microtubule-targetedrigidin analogue in hypoxic cancer cells and in a xenograft mouse model[J]. Journal of the American Chemical Society, 2019, 141(46): 18444-18454. DOI: 10.1021/jacs.9b07225.
[77] HO T C S, CHAN A H Y, GANESAN A. Thirty years of HDAC inhibitors: 2020 insight and hindsight[J]. Journal of Medicinal Chemistry, 2020, 63(21): 12460-12484. DOI: 10.1021/acs.jmedchem.0c00830.
[78] DANIEL K B, SULLIVAN E D, CHEN Y, et al. Dual-mode HDAC prodrug for covalent modification and subsequent inhibitor release[J]. Journal of Medicinal Chemistry, 2015, 58(11): 4812-4821. DOI: 10.1021/acs.jmedchem.5b00539.
[79] GRYDER B E, SODJI Q H, OYELERE A K. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed[J]. Future Medicinal Chemistry, 2012, 4(4): 505-524. DOI: 10.4155/fmc.12.3.
[80] TROELSEN K S, CALDER E DD, SKWARSKA A, et al. Zap-pano: a photocaged prodrug of the KDAC inhibitor panobinostat[J]. ChemMedChem, 2021, 16(24): 3691-3700. DOI: 10.1002/cmdc.202100403.
[81] IEDA N, YAMADA S, KAWAGUCHI M, et al. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity[J]. Bioorganic & Medicinal Chemistry, 2016, 24(12): 2789-2793. DOI: 10.1016/j.bmc.2016.04.042.
[82] POULIKAKOS P I, SULLIVAN R J, YAEGER R. Molecular pathways and mechanisms of BRAF in cancer therapy[J]. Clinical Cancer Research, 2022, 28(21): 4618-4628. DOI: 10.1158/1078-0432.CCR-21-2138.
[83] SHARMA A, SHAH S R, ILLUM H, et al. Vemurafenib: targeted inhibition of mutated BRAF for treatment of advanced melanoma and its potential in other malignancies[J]. Drugs, 2012, 72(17): 2207-2222. DOI: 10.2165/11640870-000000000-00000.
[84] KASTENHUBER E R, LOWE S W. Putting p53 in context[J]. Cell, 2017, 170(6): 1062-1078. DOI: 10.1016/j.cell.2017.08.028.
[85] ITALIANO A, MILLER W H Jr, BLAY J Y, et al. Phase I study of daily and weekly regimens of the orally administered MDM2 antagonistidasanutlin in patients with advanced tumors[J]. Investigational New Drugs, 2021, 39(6): 1587-1597. DOI: 10.1007/s10637-021-01141-2.
[86] HANSEN M J, FERINGA F M, KOBAURI P, et al. Photoactivation of MDM2 inhibitors: controlling protein-protein interaction with light[J]. Journal of the American Chemical Society, 2018, 140(41): 13136-13141. DOI: 10.1021/jacs.8b04870.
[87] GARTEN A, SCHUSTER S, PENKE M, et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism[J]. Nature Reviews Endocrinology, 2015, 11(9): 535-546. DOI: 10.1038/nrendo.2015.117.
[88] RAVAUD A, CERNY T, TERRET C, et al. Phase istudy and pharmacokinetic of CHS-828, a guanidino-containing compound, administered orally as a single dose every 3 weeks in solid tumours: an ECSG/EORTC study[J]. European Journal of Cancer, 2005, 41(5): 702-707. DOI: 10.1016/j.ejca.2004.12.023.
[89] WEI J H, RENFREW A K. Photolabile ruthenium complexes to cage and release a highly cytotoxic anticancer agent[J]. Journal of Inorganic Biochemistry, 2018, 179: 146-153. DOI: 10.1016/j.jinorgbio.2017.11.018.
[90] CHENG A L, KANG Y K, CHEN Z D, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase IIIrandomised, double-blind, placebo-controlled trial[J]. Lancet Oncology, 2009, 10(1): 25-34. DOI: 10.1016/S1470-2045(08)70285-7.
[91] TANG WW, CHEN Z Y, ZHANG W L, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects[J]. Signal Transduction and Targeted Therapy, 2020, 5(1): 87. DOI: 10.1038/s41392-020-0187-x.
[92] LAI Y D, LU N, LUO S L, et al. A photoactivated sorafenib-ruthenium(II) prodrug for resistant hepatocellular carcinoma therapy through ferroptosis and purine metabolism disruption[J]. Journal of Medicinal Chemistry, 2022, 65(19): 13041-13051. DOI: 10.1021/acs.jmedchem.2c00880.
[93] WANG H W, UDUKALA D N, SAMARAKOON T N, et al. Nanoplatforms for highly sensitive fluorescence detection of cancer-related proteases[J]. Photochemical & Photobiological Sciences, 2014, 13(2): 231-240. DOI: 10.1039/c3pp50260k.
[94] DE CASTRO M G, BUNT G, WOUTERS F S. Cathepsin B launches an apoptotic exit effort upon cell death-associated disruption of lysosomes[J]. Cell Death Discovery, 2016, 2: 16012. DOI: 10.1038/cddiscovery.2016.12.
[95] TOUPIN N P, ARORA K, SHRESTHA P, et al. BODIPY-caged photoactivated inhibitors of cathepsin B flip the light switch on cancer cell apoptosis[J]. ACS Chemical Biology, 2019, 14(12): 2833-2840. DOI: 10.1021/acschembio.9b00711.
[96] PANG X C, HE X, QIU Z W, et al. Targeting integrin pathways: mechanisms and advances in therapy[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 1. DOI: 10.1038/s41392-022-01259-6.
[97] LI M, WANG Y, LI M W, et al. Integrins as attractive targets for cancer therapeutics[J]. Acta Pharmaceutica Sinica B, 2021, 11(9): 2726-2737. DOI: 10.1016/j.apsb.2021.01.004.
[98] ZHANG L Y, WANG P Y, ZHOU X Q, et al. Cyclic ruthenium-peptide conjugates as integrin-targeting phototherapeutic prodrugs for the treatment of brain tumors[J]. Journal of the American Chemical Society, 2023, 145(27): 14963-14980. DOI: 10.1021/jacs.3c04855.
[99] CHOW A, PERICA K, KLEBANOFF C A, et al. Clinical implications of T cell exhaustion for cancer immunotherapy[J]. Nature Reviews Clinical Oncology, 2022, 19(12): 775-790. DOI: 10.1038/s41571-022-00689-z.
[100] SAMSON N, ABLASSER A. The cGAS-STING pathway and cancer[J]. Nature Cancer, 2022, 3(12): 1452-1463. DOI: 10.1038/s43018-022-00468-w.
[101] CHIN E N, YU C G, VARTABEDIAN V F, et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic[J]. Science, 2020, 369(6506): 993-999. DOI: 10.1126/science.abb4255.
[102] CALDWELL S E, JANOSKO C P, DEITERS A. Development of a light-activated STING agonist[J]. Organic & Biomolecular Chemistry, 2024, 22(2): 302-308. DOI: 10.1039/D3OB01578E.
[103] LUQUE-CABAL M, GARCÍA-TEIJIDO P, FERNÁNDEZ-PÉREZ Y, et al. Mechanisms behind the resistance to trastuzumab in HER2-amplified breast cancer and strategies to overcome it[J]. Clinical Medicine Insights Oncology, 2016, 10(S1): 21-30. DOI: 10.4137/CMO.S34537.
[104] COATS S, WILLIAMS M, KEBBLE B, et al. Antibody-drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index[J]. Clinical Cancer Research, 2019, 25(18): 5441-5448. DOI: 10.1158/1078-0432.CCR-19-0272.
[105] LI J G, XIAO D, XIE F, et al. Novel antibody-drug conjugate with UV-controlled cleavage mechanism for cytotoxin release[J]. Bioorganic Chemistry, 2021, 111: 104475. DOI: 10.1016/j.bioorg.2020.104475.
[106] SCHER H I, BEER T M, HIGANO C S, et al.Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study[J]. The Lancet, 2010, 375(9724): 1437-1446. DOI: 10.1016/S0140-6736(10)60172-9.
[107] TREE A, GRIFFIN C, SYNDIKUS I, et al. Nonrandomized comparison of efficacy and side effects of bicalutamide compared with luteinizing hormone-releasing hormone (LHRH) analogs in combination with radiation therapy in the CHHiP trial[J]. International Journal of Radiation Oncology, Biology, Physics, 2022, 113(2): 305-315. DOI: 10.1016/j.ijrobp.2021.12.160.
[108] ZHAO J, LIU N N, SUN S C, et al. Light-activated ruthenium (II)-bicalutamide prodrugs for prostate cancer[J]. Journal of Inorganic Biochemistry, 2019, 196: 110684. DOI: 10.1016/j.jinorgbio.2019.03.024.
[109] RIZZOLO P, SILVESTRI V, VALENTINI V, et al. Evaluation of CYP17A1 and CYP1B1 polymorphisms in male breast cancer risk[J]. Endocrine Connections, 2019, 8(8): 1224-1229. DOI: 10.1530/EC-19-0225.
[110] HACHEY A C, FENTON A D, HEIDARY D K, et al. Design of cytochrome P450 1B1 inhibitors via a scaffold-hopping approach[J]. Journal of Medicinal Chemistry, 2023, 66(1): 398-412. DOI: 10.1021/acs.jmedchem.2c01368.
[111] GUENGERICH F P. A history of the roles of cytochrome P450 enzymes in the toxicity of drugs[J]. Toxicological Research, 2020, 37(1): 1-23. DOI: 10.1007/s43188-020-00056-z.
[112] FOROOZESH M, SRIDHAR J, GOYAL N, et al. Coumarins and P450s, studies reported to-date[J]. Molecules, 2019, 24(8): 1620. DOI: 10.3390/molecules24081620.
[113] HAVRYLYUK D, HACHEY A C, FENTON A, et al.Ru(II) photocages enable precise control over enzyme activity with red light[J]. Nature Communications, 2022, 13(1): 3636. DOI: 10.1038/s41467-022-31269-5.
[114] GUO Z Q, PARK S, YOON J, et al. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications[J]. Chemical Society Reviews, 2014, 43(1): 16-29. DOI: 10.1039/c3cs60271k.
[115] RITSCHEL W A, BRADY M E, TAN H S, et al. Pharmacokinetics of coumarin and its 7-hydroxy-metabolites upon intravenous and peroral administration of coumarin in man[J]. European Journal of Clinical Pharmacology, 1977, 12(6): 457-461. DOI: 10.1007/BF00561066.
[116] VÖRÖSLAKOS M, KIM K, SLAGER N, et al.Hecto STAR μLED optoelectrodes for large-scale, high-precision in vivo opto-electrophysiology[J]. Advanced Science, 2022, 9(18): e2105414. DOI: 10.1002/advs.202105414.
[117] KIRINO I, FUJITA K, SAKANOUE K, et al. Metronomic photodynamic therapy using an implantable LED device and orally administered 5-aminolevulinic acid[J]. Scientific Reports, 2020, 10(1): 22017. DOI: 10.1038/s41598-020-79067-7.
[118] MANTHE R L, FOY S P, KRISHNAMURTHY N, et al. Tumor ablation and nanotechnology[J]. Molecular Pharmaceutics, 2010, 7(6): 1880-1898. DOI: 10.1021/mp1001944.
[119] JIN Y S, LIANG X L, AN Y K, et al. Microwave-triggered smart drug release from liposomes co-encapsulating doxorubicin and salt for local combined hyperthermia and chemotherapy of cancer[J]. Bioconjugate Chemistry, 2016, 27(12): 2931-2942. DOI: 10.1021/acs.bioconjchem.6b00603.
[120] 袁静静, 郑宇钊, 徐晨枫, 等. 非内吞依赖型生物大分子药物胞质递送策略研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 1-8. DOI: 10.16088/j.issn.1001-6600.2023042406.
[1] 杜丽波, 李金玉, 张晓, 李永红, 潘卫东. 毛红椿皮的化学成分及生物活性研究[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 162-172.
[2] 刘晶晶, 陈转欣, 尤佳航, 黄家艳, 程克光. 齐墩果酸-对羟基苯甲腈及其类似物的合成与抗肿瘤活性评价[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 132-138.
[3] 孙立, 初相伍, 刘春梅, 张琚政, 程克光. 熊果酸/甘草次酸-尿嘧啶核苷缀合物的合成与抗肿瘤活性评价[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 87-92.
[4] 刘茜. 南方红豆杉提取物的抗氧化、抗肿瘤活性研究[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 55-59.
[5] 吴亦明, 李亮萍, 曾淑兰, 李晓红, 周祖平, 彭艳. 1,8-萘二甲酰亚胺衍生物NA-17对肝癌细胞株HepG2的体外抗肿瘤作用研究[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 102-108.
[6] 黄婉云, 殷鹏龙, 李虹, 彭湘艳, 苏桂发. 喹诺酮-二茂铁杂合物的合成及生物活性研究[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 111-115.
[7] 霍红月, 李仲庆, 覃其品, 刘延成, 陈振锋. 邻香草醛缩胡椒乙胺席夫碱锌(Ⅱ)配合物的研究[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 65-73.
[8] 韩留玉, 戴支凯, 杨政敏, 黄俊, 覃江克, 苏桂发. 呫吨酮并吡啶衍生物XP-16对人鼻咽癌CNE细胞的体外抑制作用[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 95-100.
[9] 陈思园, 杨扬, 彭艳, 刘延成. 一种新型希夫碱钯配合物的晶体结构及抗肿瘤活性研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 81-86.
[10] 刘观艳, 程克光, 邓胜平, 刘延成, 初相伍, 陈健辉, 马璐. 雌二醇酯类衍生物的合成与抗肿瘤活性研究[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 62-66.
[11] 唐煌, 王志宇, 钟书明, 覃江克. 6-取代1-氮杂苯并蒽酮衍生物的合成及抗肿瘤活性研究[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 78-82.
[12] 聂岳坤, 潘成学, 戴支凯, 苏桂发. 苯并菲啶类化合物的合成与生物活性研究[J]. 广西师范大学学报(自然科学版), 2012, 30(1): 60-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[2] 施慧露, 莫燕华, 骆海玉, 马姜明. 檵木乙酸乙酯萃取物抑菌活性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 1 -8 .
[3] 贺青, 李栋, 罗思源, 贺寓东, 李彪, 王强. 超宽带里德堡原子天线技术研究进展[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 1 -19 .
[4] 黄仁慧, 张锐锋, 文晓浩, 闭金杰, 黄守麟, 李廷会. 基于复数协方差卷积神经网络的运动想象脑电信号解码方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 43 -56 .
[5] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1 -14 .
[6] 黎宗孝, 张健, 罗鑫悦, 赵嶷飞, 卢飞. 基于K-means和Adam-LSTM的机场进场航迹预测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 15 -23 .
[7] 宋铭楷, 朱成杰. 基于H-WOA-GWO和区段修正策略的配电网故障定位研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 24 -37 .
[8] 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58 -68 .
[9] 李志欣, 匡文兰. 结合互注意力空间自适应和特征对集成判别的细粒度图像分类[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 69 -82 .
[10] 石天怡, 南新元, 郭翔羽, 赵濮, 蔡鑫. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83 -96 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发