广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (6): 16-29.doi: 10.16088/j.issn.1001-6600.2024060402

• “污水处理”专栏 • 上一篇    下一篇

水凝胶技术在微藻采收中的应用:现状、挑战与发展分析

钟俏, 陈生龙, 唐聪聪*   

  1. 西安建筑科技大学 环境与市政工程学院,陕西 西安 710055
  • 收稿日期:2024-06-04 修回日期:2024-08-19 出版日期:2024-12-30 发布日期:2024-12-30
  • 通讯作者: 唐聪聪(1990—),女,河北沧州人,西安建筑科技大学副教授,博士。E-mail:cctang0820@xauat.edu.cn
  • 基金资助:
    国家自然科学基金(51908448);陕西省科技厅一般项目(面上)(2024JC-YBMS-393)

Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis

ZHONG Qiao, CHEN Shenglong, TANG Congcong*   

  1. School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an Shaanxi 710055, China
  • Received:2024-06-04 Revised:2024-08-19 Online:2024-12-30 Published:2024-12-30

摘要: 近年来,微藻在污水深度净化与可再生能源生产等方面的优势与潜力日益凸显。然而,传统微藻培养与采收技术存在高能耗、高成本以及潜在的生物污染等问题,在实际应用中具有一定局限性。水凝胶技术提供了一种新型微藻采收方法,具有高效、快速和可控的特点,为微藻的高效采收和利用提供新的思路和方法。本文探讨高吸水凝胶技术在微藻采收中的作用方式与机制,以及针对水凝胶自身优化、与微藻交互作用及环境友好性等方面存在问题的优化方法和研究进展,最后提出水凝胶技术在微藻采收中的发展展望,为水凝胶技术在微藻采收领域的发展与应用提供一定的理论和方法支撑。

关键词: 微藻采收, 水凝胶, 优化改性, 吸水性能, 机械性能

Abstract: In recent years, the advantages and potential of microalgae in deep sewage purification and renewable energy production have become increasingly prominent. However, the traditional microalgae cultivation and harvesting technology has some limitations in practical application because of its high energy consumption, high cost and potential biological pollution. Hydrogel technology provides a new microalgae harvesting method, which has the characteristics of high efficiency, fast and controllable, and provides a new idea and method for the efficient harvesting and utilization of microalgae. In this paper, the action mode and mechanism of superabsorptive gel technology in microalgae harvesting were discussed, and the optimization methods and research progress were made to solve the problems in the optimization of hydrogel itself, interaction with microalgae and environmental friendliness. Finally, the development prospect of hydrogel technology in microalgae harvesting was put forward, which provided some theoretical and methodological support for the development and application of hydrogel technology in microalgae harvesting.

Key words: microalgae harvesting, hydrogel, optimization modification, water absorption performance, mechanical property

中图分类号:  X703.5

[1] SOUDAGAR M E M, KIONG T S, JATHAR L, et al. Perspectives on cultivation and harvesting technologies of microalgae, towards environmental sustainability and life cycle analysis[J]. Chemosphere, 2024, 353: 141540. DOI: 10.1016/j.chemosphere.2024.141540.
[2] ABBASZAADEH A, GHOBADIAN B, OMIDKHAH M R, et al. Current biodiesel production technologies: a comparative review[J]. Energy Conversion and Management, 2012, 63: 138-148. DOI: 10.1016/j.enconman.2012.02.027.
[3] 陈庆峰,余哲,黄诗琪,等.菌藻共生好氧颗粒污泥的分形特征研究[J].广西师范大学学报(自然科学版),2022,40(6):163-172.DOI:10.16088/j.issn.1001-6600.2021082104.
[4] 庞冰冰,叶丰彩,李钰艳,等.微藻类胡萝卜素合成与代谢调控研究进展[J].广西师范大学学报(自然科学版),2021,39(6):13-23.DOI:10.16088/j.issn.1001-6600.2021022801.
[5] 曹运齐,刘云云,胡南江,等.燃料乙醇的发展现状分析及前景展望[J].生物技术通报,2019,35(4):163-169.DOI:10.13560/j.cnki.biotech.bull.1985.2018-1002.
[6] CHEN H H, ZHOU D, LUO G, et al. Macroalgae for biofuels production: progress and perspectives[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 427-437. DOI: 10.1016/j.rser.2015.03.086.
[7] 廖莎,姚长洪,师文静,等.光合微生物产氢技术研究进展[J].当代石油石化,2020,28(11):36-41.DOI:10.3969/j.issn.1009-6809.2020.11.007.
[8] JACKSON B A, BAHRI P A, MOHEIMANI N R. Repetitive non-destructive milking of hydrocarbons from Botryococcus braunii[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1229-1240. DOI: 10.1016/j.rser.2017.05.130.
[9] LORENTZ J F, CALIJURI M L, ASSEMANY P P, et al. Microalgal biomass as a biofertilizer for pasture cultivation: plant productivity and chemical composition[J]. Journal of Cleaner Production, 2020, 276: 124130. DOI: 10.1016/j.jclepro.2020.124130.
[10] CHITTORA D, MEENA M, BARUPAL T, et al. Cyanobacteria as a source of biofertilizers for sustainable agriculture[J]. Biochemistry and Biophysics Reports, 2020, 22: 100737. DOI: 10.1016/j.bbrep.2020.100737.
[11] LAURENS L M L, MARKHAM J, TEMPLETON D W, et al. Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction[J]. Energy & Environmental Science, 2017, 10(8): 1716-1738. DOI: 10.1039/c7ee01306j.
[12] OLIVEIRA A S, ALVES M, LEITÃO F, et al. Bioremediation of coastal aquaculture effluents spiked with florfenicol using microalgae-based granular sludge: a promising solution for recirculating aquaculture systems[J]. Water Research, 2023, 233: 119733. DOI: 10.1016/j.watres.2023.119733.
[13] ZHU L D, HU T Y, LI S X, et al. Effects of operating parameters on algae Chlorella vulgaris biomass harvesting and lipid extraction using metal sulfates as flocculants[J]. Biomass and Bioenergy, 2020, 132: 105433. DOI: 10.1016/j.biombioe.2019.105433.
[14] HASEEB M T, HUSSAIN M A, YUK S H, et al. Polysaccharides based superabsorbent hydrogel from linseed: Dynamic swelling, stimuli responsive on-off switching and drug release[J]. Carbohydrate Polymers, 2016, 136: 750-756. DOI: 10.1016/j.carbpol.2015.09.092.
[15] 邬欣蕾,陈红,程志强.羧甲基淀粉钠共聚高吸水树脂的制备[J].吉林农业大学学报,2020,42(2):219-228.DOI:10.13327/j.jjlau.2017.3755.
[16] ZHANG W X, WANG P, DENG Y, et al. Preparation of superabsorbent polymer gel based on PVPP and its application in water-holding in sandy soil[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106760. DOI: 10.1016/j.jece.2021.106760.
[17] HAMEDI H, MORADI S, HUDSON S M, et al. Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review[J]. Carbohydrate Polymers, 2018, 199: 445-460. DOI: 10.1016/j.carbpol.2018.06.114.
[18] BATISTA R A, ESPITIA P J P, DE SOUZA SIQUEIRA QUINTANS J, et al. Hydrogel as an alternative structure for food packaging systems[J]. Carbohydrate Polymers, 2019, 205: 106-116. DOI: 10.1016/j.carbpol.2018.10.006.
[19] NEETHU T M, DUBEY P K, KASWALA A R. Prospects and applications of hydrogel technology in agriculture[J]. International Journal of Current Microbiology and Applied Sciences, 2018, 7(5): 3155-3162. DOI: 10.20546/ijcmas.2018.705.369.
[20] ZHANG Z B, FU H, LI Z, et al. Hydrogel materials for sustainable water resources harvesting & treatment:synthesis, mechanism and applications[J]. Chemical Engineering Journal, 2022, 439: 135756. DOI: 10.1016/j.cej.2022.135756.
[21] MARTÍN DEL CAMPO J S, PATIÑO R. Harvesting microalgae cultures with superabsorbent polymers: desulfurization of Chlamydomonas reinhardtii for hydrogen production[J]. Biotechnology and Bioengineering, 2013, 110(12): 3227-3234. DOI: 10.1002/bit.24989.
[22] WEI C Y, HUANG Y, LIAO Q, et al. The kinetics of the polyacrylic superabsorbent polymers swelling in microalgae suspension to concentrate cells density[J]. Bioresource Technology, 2018, 249: 713-719. DOI: 10.1016/j.biortech.2017.10.066.
[23] 任佳欣,陈玲,龚江,等.低蒸发焓水凝胶用于太阳能驱动水净化[J].高分子通报,2023,36(11):1406-1419.DOI:10.14028/j.cnki.1003-3726.2023.11.003.
[24] ZHANG W X, WANG P, LIU S F, et al. Factors affecting the properties of superabsorbent polymer hydrogels and methods to improve their performance: a review[J]. Journal of Materials Science, 2021, 56(29): 16223-16242. DOI: 10.1007/s10853-021-06306-1.
[25] 刘碧华,汤培平,林康英,等.农用低成本超强吸水剂的制备工艺[J].化学工程,2013,41(3):20-24.DOI:10.3969/j.issn.1005-9954.2013.03.005.
[26] BERTHOLD J, RINAUDO M, SALMEŃ L. Association of water to polar groups; estimations by an adsorption model for ligno-cellulosic materials[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 112(2/3): 117-129. DOI: 10.1016/0927-7757(95)03419-6.
[27] HU X S, WANG Q, LIU Q, et al. Villus-like nanocomposite hydrogels with a super-high water absorption capacity[J]. Journal of Materials Chemistry A, 2020, 8(25): 12613-12622. DOI: 10.1039/D0TA03907A.
[28] LI X D, LI Q, XU X, et al. Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 564-572. DOI: 10.1016/j.jtice.2015.10.027.
[29] VO N B, TRAN T Y, NGUYEN L T H, et al. Synthesis, characterization, and swelling properties of a novel tapioca-g-poly(acrylic acid-2-acrylamido-2-methylpropane sulfonic acid)/ammonium polyphosphate superabsorbent polymer[J]. Materials Research Express, 2024, 11(2): 025302. DOI: 10.1088/2053-1591/ad2485.
[30] YOSHINOBU M, MORITA M, HIGUCHI M, et al. Morphological study of hydrogels of cellulosic super water absorbents by CRYO-SEM observation[J]. Journal of Applied Polymer Science, 1994, 53(9): 1203-1209. DOI: 10.1002/app.1994.070530907.
[31] 卢国冬,燕青芝,宿新泰,等.多孔水凝胶研究进展[J].化学进展,2007,19(4):485-493.DOI:10.3321/j.issn:1005-281X.2007.04.006.
[32] 刘莲英,王勤,孙玉凤,等.快速、高强超吸水凝胶的研究[J].高分子通报,2007(2):41-47.DOI:10.3969/j.issn.1003-3726.2007.02.005.
[33] 侯瑞,李桂群,张岩,等.聚合物相分离技术在超疏水表面制备中的应用[J].化工进展,2020,39(2):616-626.DOI:10.16085/j.issn.1000-6613.2019-0765.
[34] CHEN W S, WANG T, DOU Z O, et al. Microalgae harvesting by self-driven 3D microfiltration with rationally designed porous superabsorbent polymer (PSAP) beads[J]. Environmental Science & Technology, 2021, 55(22): 15446-15455. DOI: 10.1021/acs.est.1c04907.
[35] LESSAN F, FOUDAZI R. Effect of [EMIM] [BF4] ionic liquid on the properties of ultrafiltration membranes[J]. Polymer, 2020, 210: 122977. DOI: 10.1016/j.polymer.2020.122977.
[36] KABIRI K, ZOHURIAAN-MEHR M J. Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate[J]. Macromolecular Materials and Engineering, 2004, 289(7): 653-661. DOI: 10.1002/mame.200400010.
[37] OKAY O. Macroporous copolymer networks[J]. Progress in Polymer Science, 2000, 25(6): 711-779. DOI: 10.1016/S0079-6700(00)00015-0.
[38] SEO M, KIM S, OH J, et al. Hierarchically porous polymers from hyper-cross-linked block polymer precursors[J]. Journal of the American Chemical Society, 2015, 137(2): 600-603. DOI: 10.1021/ja511581w.
[39] SABA S A, MOUSAVI M P S, BÜHLMANN P, et al. Hierarchically porous polymer monoliths by combining controlled macro- and microphase separation[J]. Journal of the American Chemical Society, 2015, 137(28): 8896-8899. DOI: 10.1021/jacs.5b04992.
[40] FENG Y H Z, GAO H L, WU D, et al. Biomimetic lamellar chitosan scaffold for soft gingival tissue regeneration[J]. Advanced Functional Materials, 2021, 31(43): 2105348. DOI: 10.1002/adfm.202105348.
[41] WANG J, CHEN X C, XUE Y F, et al. Thermo-triggered ultrafast self-healing of microporous coating for on-demand encapsulation of biomacromolecules[J]. Biomaterials, 2019, 192: 15-25. DOI: 10.1016/j.biomaterials.2018.10.038.
[42] ZHANG R J, HU R R, LI X M, et al. A bubble-derived strategy to prepare multiple graphene-based porous materials[J]. Advanced Functional Materials, 2018, 28(23): 1705879. DOI: 10.1002/adfm.201705879.
[43] KABIRI K, OMIDIAN H, HASHEMI S A, et al. Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate[J]. European Polymer Journal, 2003, 39(7): 1341-1348. DOI: 10.1016/S0014-3057(02)00391-9.
[44] 朱帅帅,肖芝,周晓东,等.多孔聚丙烯酸钠高吸水性树脂的合成及表面改性[J].工程塑料应用,2019,47(6):48-54.DOI:10.3969/j.issn.1001-3539.2019.06.009.
[45] FOUDAZI R, ZOWADA R, MANAS-ZLOCZOWER I, et al. Porous hydrogels: present challenges and future opportunities[J]. Langmuir, 2023, 39(6): 2092-2111. DOI: 10.1021/acs.langmuir.2c02253.
[46] SOKIC S, CHRISTENSON M, LARSON J, et al. In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching[J]. Macromolecular Bioscience, 2014, 14(5): 731-739. DOI: 10.1002/mabi.201300406.
[47] SHANG Y H, WEI J J, HE X, et al. In situ fabrication of benzoquinone crystal layer on the surface of nest-structural ionohydrogel for flexible “all-in-one” supercapattery[J]. Advanced Materials, 2023, 35(12): 2208443. DOI: 10.1002/adma.202208443.
[48] KELLY B E, BHATTACHARYA I, HEIDARI H, et al. Volumetric additive manufacturing via tomographic reconstruction[J]. Science, 2019, 363(6431): 1075-1079. DOI: 10.1126/science.aau7114.
[49] ZHANG F, JIAO W L, SI Y, et al. Tailoring nanoporous-engineered sponge fiber molecular sieves with ternary-nested architecture for precise molecular separation[J]. ACS Nano, 2021, 15(8): 13623-13632. DOI: 10.1021/acsnano.1c04575.
[50] WANG X F, HUANG Z, MIAO D Y, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2019, 13(2): 1060-1070. DOI: 10.1021/acsnano.8b08242.
[51] AGRAWAL A, HUSSAIN C M. 3D-printed hydrogel for diverse applications: a review[J]. GELS, 2023, 9(12): 960. DOI: 10.3390/gels9120960.
[52] LU L Y, YUAN S L, WANG J, et al. The formation mechanism of hydrogels[J]. Current Stem Cell Research & Therapy, 2018, 13(7): 490-496. DOI: 10.2174/1574888X12666170612102706.
[53] AHMED S, NAKAJIMA T, KUROKAWA T, et al. Brittle-ductile transition of double network hydrogels: mechanical balance of two networks as the key factor[J]. Polymer, 2014, 55(3): 914-923. DOI: 10.1016/j.polymer.2013.12.066.
[54] ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627. DOI: 10.1126/science.aaf3627.
[55] SHEIKHI M, RAFIEMANZELAT F, MORONI L, et al. Ultrahigh-water-content biocompatible gelatin-based hydrogels: toughened through micro-sized dissipative morphology as an effective strategy[J]. Materials Science and Engineering: C, 2021, 120: 111750. DOI: 10.1016/j.msec.2020.111750.
[56] 乐妍,董爽爽,贠延滨.N-异丙基丙烯酰胺/丙烯酸钠水凝胶的制备及正渗透应用[J].化工新型材料,2021,49(5):237-240,244.DOI:10.19817/j.cnki.issn1006-3536.2021.05.053.
[57] DANNERT C, STOKKE B T, DIAS R S. Nanoparticle-hydrogel composites: from molecular interactions to macroscopic behavior[J]. Polymers, 2019, 11(2): 275. DOI: 10.3390/polym11020275.
[58] GAO G R, DU G L, SUN Y N, et al. Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption[J]. ACS Applied Materials & Interfaces, 2015, 7(8): 5029-5037. DOI: 10.1021/acsami.5b00704.
[59] XU P, SHANG Z J, YAO M L, et al. Mechanistic insight into improving strength and stability of hydrogels via nano-silica[J]. Journal of Molecular Liquids, 2022, 357: 119094. DOI: 10.1016/j.molliq.2022.119094.
[60] KHAN S A, ABBASI N, HUSSAIN D, et al. Sustainable mitigation of paracetamol with a novel dual-functionalized pullulan/kaolin hydrogel nanocomposite from simulated wastewater[J]. Langmuir, 2022, 38(27): 8280-8295. DOI: 10.1021/acs.langmuir.2c00702.
[61] LYU B, ZHANG Y G, REN J J, et al. High mechanical properties nanocomposite hydrogel achieved based on montmorillonite and tailored microgel suspensions reinforcing polyacryamide networks[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 687: 133566. DOI: 10.1016/j.colsurfa.2024.133566.
[62] CHEN M Y, SHEN Y, XU L H, et al. Synthesis of a super-absorbent nanocomposite hydrogel based on vinyl hybrid silica nanospheres and its properties[J]. RSC Advances, 2020, 10(67): 41022-41031. DOI: 10.1039/d0ra07074b.
[63] KABIRI K, HESARIAN S, ZOHURIAAN-MEHR M J, et al. Superabsorbent polymer composites: does clay always improve properties?[J]. Journal of Materials Science, 2011, 46(20): 6718-6725. DOI: 10.1007/s10853-011-5627-0.
[64] QI Z M, HU X S. Waterabsorbency of super absorbent polymer based on flexible polymeric network[J]. European Polymer Journal, 2022, 166: 111045. DOI: 10.1016/j.eurpolymj.2022.111045.
[65] GUO F, ARYANA S, HAN Y H, et al. A review of the synthesis and applications of polymer-nanoclay composites[J]. Applied Sciences, 2018, 8(9): 1696. DOI: 10.3390/app8091696.
[66] SUN J S, DU W C, PU X L, et al. Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery[J]. Chemical Papers, 2015, 69(12): 1598-1607. DOI: 10.1515/chempap-2015-0185.
[67] JIANG G Q, LIU C, LIU X L, et al. Network structure and compositional effects on tensile mechanical properties of hydrophobic association hydrogels with high mechanical strength[J]. Polymer, 2010, 51(6): 1507-1515. DOI: 10.1016/j.polymer.2010.01.061.
[68] HOU X N, HUANG B T, ZHOU L L, et al. An amphiphilic entangled network design toward ultratough hydrogels[J]. Advanced Materials, 2023, 35(28): 2301532. DOI: 10.1002/adma.202301532.
[69] 刘瑞雪,周腾,樊晓敏,等.明胶基复合水凝胶研究进展[J].轻工学报,2018,33(6):42-54,81.DOI:10.3969/j.issn.2096-1553.2018.06.006.
[70] ZHANG J T, HUANG S W, CHENG S X, et al. Preparation and properties of poly(N-isopropylacrylamide)/poly(N-isopropylacrylamide) interpenetrating polymer networks for drug delivery[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(5): 1249-1254. DOI: 10.1002/pola.11092.
[71] LIN F C, LU X C, WANG Z, et al. In situ polymerization approach to cellulose-polyacrylamide interpenetrating network hydrogel with high strength and pH-responsive properties[J]. Cellulose, 2019, 26(3): 1825-1839. DOI: 10.1007/s10570-018-2171-y.
[72] 朱琳,陈强,徐昆.高强度双网络水凝胶的增韧机理[J].化学进展,2014,26(6):1032-1038.DOI:10.7536/PC131212.
[73] CRETON C. 50th anniversary perspective: networks and gels: soft but dynamic and tough[J]. Macromolecules, 2017, 50(21): 8297-8316. DOI: 10.1021/acs.macromol.7b01698.
[74] HUANG Y W, XIAO L Y, ZHOU J, et al. Strong tough polyampholyte hydrogels via the synergistic effect of ionic and metal-ligand bonds[J]. Advanced Functional Materials, 2021, 31(37): 2103917. DOI: 10.1002/adfm.202103917.
[75] HAN Z L, WANG P, LU Y C, et al. A versatile hydrogel network-repairing strategy achieved by the covalent-like hydrogen bond interaction[J]. Science Advances, 2022, 8(8): eabl5066. DOI: 10.1126/sciadv.abl5066.
[76] XU X W, JERCA V V, HOOGENBOOM R. Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels[J]. Materials Horizons, 2021, 8(4): 1173-1188. DOI: 10.1039/D0MH01514H.
[77] CHEN Q, CHEN H, ZHU L, et al. Fundamentals of double network hydrogels[J]. Journal of Materials Chemistry B, 2015, 3(18): 3654-3676. DOI: 10.1039/c5tb00123d.
[78] DU C, ZHANG X N, SUN T L, et al. Hydrogen-bond association-mediated dynamics and viscoelastic properties of tough supramolecular hydrogels[J]. Macromolecules, 2021, 54(9): 4313-4325. DOI: 10.1021/acs.macromol.1c00152.
[79] ZHU R X, ZHU D D, ZHENG Z, et al. Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks[J]. Nature Communications, 2024, 15(1): 1344. DOI: 10.1038/s41467-024-45485-8.
[80] HAN S J, WU Q R, ZHU J D, et al. Tough hydrogel with high water content and ordered fibrous structures as an artificial human ligament[J]. Materials Horizons, 2023, 10(3): 1012-1019. DOI: 10.1039/D2MH01299E.
[81] HAMLEY I W. Diffuse scattering from lamellar structures[J]. Soft Matter, 2022, 18(4): 711-721. DOI: 10.1039/d1sm01758f.
[82] CHEN Y, DANG B, WANG C, et al. Intelligent designs from nature: biomimetic applications in wood technology[J]. Progress in Materials Science, 2023, 139: 101164. DOI: 10.1016/j.pmatsci.2023.101164.
[83] WU J R, QIN Z, QU L L, et al. Natural hydrogel in American lobster: a soft armor with high toughness and strength[J]. Acta Biomaterialia, 2019, 88: 102-110. DOI: 10.1016/j.actbio.2019.01.067.
[84] GUO X, DONG X Y, ZOU G J, et al. Strong and tough fibrous hydrogels reinforced by multiscale hierarchical structures with multimechanisms[J]. Science Advances, 2023, 9(2): eadf7075. DOI: 10.1126/sciadv.adf7075.
[85] WANG Y J, LIU S J, YU W. Bioinspired anisotropic chitosan hybrid hydrogel[J]. ACS Applied Bio Materials, 2020, 3(10): 6959-6966. DOI: 10.1021/acsabm.0c00828.
[86] GUAN Q F, HAN Z M, ZHU Y B, et al. Bio-inspired lotus-fiber-like spiral hydrogel bacterial cellulose fibers[J]. Nano Letters, 2021, 21(2): 952-958. DOI: 10.1021/acs.nanolett.0c03707.
[87] ASOH T A, MATSUSAKI M, KANEKO T, et al. Fabrication of temperature-responsive bending hydrogels with a nanostructured gradient[J]. Advanced Materials, 2008, 20(11): 2080-2083. DOI: 10.1002/adma.200702727.
[88] YIN Q Y, TU S H, CHEN M, et al. Bioinspired design of reinforced gradient hydrogels with rapid water-triggered shape memory performance[J]. ACS Applied Polymer Materials, 2020, 2(7): 2858-2866. DOI: 10.1021/acsapm.0c00392.
[89] JIANG Y, ZHAN D Z, ZHANG M, et al. Strong and ultra-tough ionic hydrogel based on hyperbranched macro-cross-linker: influence of topological structure on properties[J]. Angewandte Chemie International Edition, 2023, 62(42): e202310832. DOI: 10.1002/anie.202310832.
[1] 付佳慧, 王威, 邓华, 赵栋, 张舒云, 叶顺云, 胡乐宁. 赤泥-聚丙烯酸-羧甲基纤维素水凝胶对水中Pb2+吸附研究[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 150-162.
[2] 王威, 邓华, 胡乐宁, 李杨. 赤泥-海藻酸钠水凝胶对水中Pb(Ⅱ)的吸附性能[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 105-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1 -12 .
[2] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 翟思琪, 蔡文君, 朱苏, 李韩龙, 宋海亮, 杨小丽, 杨玉立. 汲取液溶质反向扩散与正渗透中膜污染的相互关系研究[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 30 -39 .
[5] 郑国权, 秦永丽, 汪晨祥, 葛仕佳, 闻倩敏, 蒋永荣. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40 -52 .
[6] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[7] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[8] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[9] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
[10] 段沁宇, 薛贵军, 谭全伟, 谢文举. 基于SVMD的改进BWO-TimesNet短期热负荷预测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 101 -116 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发