广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (2): 86-97.doi: 10.16088/j.issn.1001-6600.2022031501

• 研究论文 • 上一篇    下一篇

控制时机和力度对传染病传播的影响

赵明*, 罗秋莲, 陈蔚萌, 陈嘉妮   

  1. 广西师范大学 物理科学与技术学院,广西 桂林 541004
  • 收稿日期:2022-03-15 修回日期:2022-07-29 出版日期:2023-03-25 发布日期:2023-04-25
  • 通讯作者: 赵明(1977—),女,辽宁鞍山人,广西师范大学教授,博士。E-mail:zhaom17@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(12065002);广西师范大学物理科学与技术学院研究生创新基金(wlzls)

Influence of Control Timing and Strength on the Spreading of Epidemic

ZHAO Ming*, LUO Qiulian, CHEN Weimeng, CHEN Jiani   

  1. College of Physics and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2022-03-15 Revised:2022-07-29 Online:2023-03-25 Published:2023-04-25

摘要: 隔离是控制传染病传播的最主要手段之一,控制时机和力度都会给控制效果带来不可忽视的影响。为找到最合适的控制时机和力度,本文基于无标度网络和SIR传播模型,研究控制时机和力度对传染病传播范围以及个体活动性的影响。结果表明,控制模式为只控制染病态时,无论是在不相关随机无标度网络模型还是在真实无标度网络中,当控制力度相同时,控制时机越早控制效果越好;当控制时机相同时,控制力度越大控制效果越好。无论是在网络模型还是在真实网络中,个体活动性大小的变化则是非单调的:当控制力度不变时,个体活动性随着控制时机的增大有先减小后增大的趋势,表明较早或较晚控制在传染病传播结束时活动受控制的总个体数量越少,而当在传染病传播的高峰前后开始施加控制时将需要控制更多的染病个体;当控制时机不变但在峰值之前时,个体活动性也是先减小后增大,而在峰值之后个体活动性是单调下降的。综合起来看,控制时机越早控制力度越大控制效果越好、个体受到的影响越小,即假如为实现传播范围最小被控制个体数量最少这一目的,在观测到传染病后的第1时步就开始采用最强的控制力度1,将取得最好的控制效果,传播范围从未控制的55.9%降低到0.1%,而且人群中仅有总人数0.2%的个体被控制。

关键词: 复杂网络, 控制时机, 控制力度, 传播范围, 个体活动性

Abstract: Isolation is one of the most important means to control the epidemic spreading, and the control timing and strength have great significance in the control effects. To find the most appropriate control timing and strength, in this paper, and based on uncorrelated random scale-free network and SIR spreading model, the effects of control timing and strength on the range of infectious disease spreading and individual activity are studied. The results show that if the control mode is to control the infectious state only, in both of the scale-free network model and in the real scale-free networks, when the control strength keeps the same, the earlier the control time is, the better the control effect is, and when the control time is the same, the greater the control effort is, the better the control effect is. Whether in the network model or in the real networks, the change of individual activity is non-monotonous: when the control strength is unchanged, the individual activity decreases first and then increases with the increase of control time, indicating that the number of total individuals whose activities are controlled earlier or later at the end of the epidemic transmission is less, and more infected individuals will need to be controlled when control is started around the peak of infectious disease transmission; When the control time is unchanged but before the peak value, the individual activity also decreases first and then increases, while after the peak value, the individual activity decreases monotonously.To sum up, the earlier the control time is, the greater the control force is, the better the control effect will be, and the less the individual will be affected. That is, if the strongest control strength 1 is used at the first step after the epidemic is observed, the best control effect will be achieved. The transmission range will be reduced from 55.9% to 0.1%, and only 0.2% of the total population will be controlled.

Key words: complex networks, control timing, control strength, spreading scope, individual activity

中图分类号: 

  • O175
[1] DONTHU N, GUSTAFSSON A. Effects of COVID-19 on business and research[J]. Journal of Business Research, 2020,117: 284-289. DOI: 10.1016/j.jbusres.2020.06.008.
[2] FAIRLIE R. The impact of COVID-19 on small business owners: evidence from the first three months after widespread social-distancing restrictions[J].Journal of Economics & Management Strategy, 2020,29(4): 727-740. DOI: 10.1111/jems.12400.
[3] HOOFMAN J, SECORD E. The effect of COVID-19 on education[J]. Pediatric Clinics of North America, 2021,68(5): 1071-1079. DOI: 10.1016/j.pcl.2021.05.009.
[4] KHAN I, SHAH D. SHAH S S. COVID-19 pandemic and its positive impacts on environment: an updated review[J]. International Journal of Environmental Science and Technology, 2021,18(2): 521-530.DOI: 10.1007/s13762-020-03021-3.
[5] 沈国兵.“新冠肺炎”疫情对我国外贸和就业的冲击及纾困举措[J].上海对外经贸大学学报,2020,27(2): 16-25.DOI: 10.16060/j.cnki.issn2095-8072.2020.02.002.
[6] 夏杰长,丰晓旭.新冠肺炎疫情对旅游业的冲击与对策[J].中国流通经济,2020,34(3): 3-10.DOI: 10.14089/j.cnki.cn11-3664/f.2020.03.001.
[7] 何诚颖,闻岳春,常雅丽,等.新冠病毒肺炎疫情对中国经济影响的测度分析[J].数量经济技术经济研究,2020,37(5): 3-22.DOI: 10.13653/j.cnki.jqte.2020.05.001.
[8] 沈国强,任慧妍,周龙,等.新型冠状病毒肺炎疫情的应对政策及评估体系研究[J].科技导报,2021,39(5): 87-98. DOI: 10.3981/j.issn.1000-7857.2021.05.010.
[9] 戴碧涛,谭索怡,陈洒然,等.基于手机大数据的中国人口迁徙模式及疫情影响研究[J].物理学报,2021,70(6):068903.
[10] WHO. WHO coronavirus (COVID-19) dashboard[EB/OL]. (2022-03-02)[2022-03-15]. https://covid19.who.int/.
[11] O'DONNELL J, ALLTUCKER K. Medical bias: from pain pills to COVID-19, racial discrimination in health care festers[EB/OL]. [2021-03-02]. https://www.usatoday.com/story/news/health/2020/06/14/festering-racial-bias-health-care-factor-covid-19-disparities/5320187002/.
[12] YANG Z F, ZENG Z Q, WANG K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of Thoracic Disease, 2020, 12(3): 165-174.
[13] 薄立军,张婷婷,徐明雯婵.基于平均场博弈的新冠肺炎最优防控力度切换策略[J].应用概率统计,2021,37(3):274-290.
[14] 闫金红.全球抗疫背景下人类命运共同体的理论溯源及现实思考[J].哈尔滨工业大学学报(社会科学版),2022,24(1):9-15.
[15] GARDNER B J, KILPATRICK A M. Contact tracing efficiency, transmission heterogeneity, and accelerating COVID-19 epidemics[J]. PLoS Computational Biology, 2021, 17(6): e1009122.
[16] JIANG C. Optimal control of SARS epidemics based on cybernetics[J]. International Journal of Systems Science, 2007, 38(6): 451-457.
[17] BOLZONI L, BONACINI E, SORESINA C, et al. Time-optimal control strategies in SIR epidemic models[J]. Mathematical Biosciences, 2017, 292: 86-96.
[18] BOLZONI L, DELLA MARCA R, GROPPI M. On the optimal control of SIR model with Erlang-distributed infectious period: isolation strategies[J]. Journal of Mathematical Biology, 2021, 83(4): 36.
[19] NENCHEV V. Optimal quarantine control of an infectious outbreak[J]. Chaos Solitons & Fractals, 2020, 138: 110139.
[20] CHEN X R, FU F. Highly coordinated nationwide massive travel restrictions are central to effective mitigation and control of COVID-19 outbreaks in China[J]. Proceedings. Mathematical, Physical, and Engineering Sciences / the Royal Society, 2022, 478(2260): 20220040.
[21] CATANZARO M, BOGUÑÁ M, PASTOR-SATORRAS R. Generation of uncorrelated random scale-free networks[J]. Physical Review E, 2005, 71(2 Pt 2): 027103.
[22] MANN P, SMITH V A, MITCHELL J B O, et al. Exact formula for bond percolation on cliques[J]. Physical Review E, 2021, 104(2): 024304.
[23] CLAUSETA, SHALIZI C R, NEWMANM E J. Power-law distributions in empirical data[J]. SIAM Review, 2009, 51(4): 661-703.
[24] YILDIRIM Y, BISWAS A, KARA A H, et al. Optical soliton perturbation and conservation law with Kudryashov's refractive index having quadrupled power-law and dual form of generalized nonlocal nonlinearity[J]. Optik, 2021, 240: 166966.
[25] ÓDOR G. Nonuniversal power-law dynamics of susceptible infected recovered models on hierarchical modular networks[J]. Physical Review E, 2021, 103(6): 062112.
[26] DOROGOVTSEV S N, MENDES J F F. Comment on “breakdown of the internet under intentional attack”[J]. Physical Review Letters, 2001, 87(21): 219801.
[27] CURTIS C W, PORTER M A. Detection of functional communities in networks of randomly coupled oscillators using the dynamic-mode decomposition[J]. Physical Review E, 2021, 104(4): 044305.
[28] KERMACK W O, MCKENDRICK A G.Contributions to the mathematical theory of epidemics:II. The problem of endemicity[J]. Bulletin of Mathematical Biology, 1991, 53(1/2): 57-87.
[29] ALLEN L J. Some discrete-time SI, SIR, and SIS epidemic models[J]. Mathematical Biosciences, 1994, 124(1): 83-105.
[30] 宋俐.江苏省2006~2008年突发公共卫生事件流行特征分析[J].现代预防医学,2010,37(11):2007-2009,2011.
[31] 范如国,王奕博,罗明,等.基于SEIR的新冠肺炎传播模型及拐点预测分析[J].电子科技大学学报,2020,49(3):369-374.
[32] TANG M, LIU L, LIU Z H. Influence of dynamical condensation on epidemic spreading in scale-free networks[J]. Physical Review E, 2009, 79(1): 016108.
[33] SCHWARTZ I B, SMITH H L. Infinite subharmonic bifurcation in an SEIR epidemic model[J]. Journal of Mathematical Biology, 1983, 18(3): 233-253.
[34] 秦海虹.深村的生活世界:一个麻风村落的过去、现在与未来[D].济南:山东大学,2020.
[35] LI Z, REN T, MA X Q, et al. Identifying influential spreaders by gravity model[J]. Scientific Reports, 2019, 9(1): 8387.
[36] XUE X F. The critical infection rate of the high-dimensional two-stage contact process[J]. Statistics & Probability Letters, 2018, 140: 115-125.
[37] LI B, SAAD D. Impact ofpresymptomatic transmission on epidemic spreading in contact networks: a dynamic message-passing analysis[J]. Physical Review E, 2021, 103(5): 052303.
[38] CHANG X, CAI C R, ZHANG J Q, et al. Analytical solution of epidemic threshold for coupled information-epidemic dynamics on multiplex networks with alterable heterogeneity[J]. Physical Review E, 2021, 104(4): 044303.
[39] 汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012:309-313.
[40] ZHENG M H, WANG W, TANG M, et al. Multiple peaks patterns of epidemic spreading in multi-layer networks[J]. Chaos,Solitons & Fractals, 2018, 107: 135-142.
[1] 翁小雄, 谢志鹏. 基于多层复杂网络的高速公路节点重要性研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 78-88.
[2] 何韩吉, 邓光明, 葛梦兰. 中原城市群空气质量空间关联研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 151-162.
[3] 李珏璇, 赵明. 网络的平均度和规模对部分同步状态的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 115-124.
[4] 王 意,邹艳丽,李 可,黄 李. 分布式电站入网方式对电网同步的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 24-31.
[5] 邹艳丽, 周秋花. BA无标度通信网络的级联故障研究[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 83-87.
[6] 张兵. 复杂网络上知识流动的小世界现象[J]. 广西师范大学学报(自然科学版), 2010, 28(4): 15-20.
[7] 吴焕政, 吴渝. BBS网络舆情定量分析研究[J]. 广西师范大学学报(自然科学版), 2010, 28(3): 155-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周正春. 互补序列研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 1 -16 .
[2] 杨烁祯, 张珑, 王建华, 张恒远. 声音事件检测综述[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 1 -18 .
[3] 杨生龙, 母庆闯, 张志华, 刘葵. 废旧锂离子电池回收利用技术进展[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 19 -26 .
[4] 李康良, 邱彩雄, 何爽, 黄春华, 伍冠一. 白介素-31参与瘙痒的研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 27 -35 .
[5] 卢许孟, 南新元, 夏斯博. 无模型坐标补偿积分滑模约束的自动驾驶汽车轨迹跟踪控制[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 36 -48 .
[6] 张伟健, 邴其春, 沈富鑫, 胡嫣然, 高鹏. 城市快速路路段行程时间估计方法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 49 -57 .
[7] 杨秀, 韦笃取. 基于单状态变量的永磁同步电机混沌跟踪控制[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 58 -66 .
[8] 赵媛, 宋树祥, 刘振宇, 岑明灿, 蔡超波, 蒋品群. 一种新型电流镜运算跨导放大器的设计[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 67 -75 .
[9] 王鲁娜, 杜洪波, 朱立军. 基于流形正则的堆叠胶囊自编码器优化算法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 76 -85 .
[10] 杨秀凤, 范江华. 向量平衡问题强有效解集的连通性[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 98 -105 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发