广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (2): 76-85.doi: 10.16088/j.issn.1001-6600.2022091102

• 研究论文 • 上一篇    下一篇

基于流形正则的堆叠胶囊自编码器优化算法

王鲁娜1, 杜洪波1*, 朱立军2   

  1. 1.沈阳工业大学 理学院, 辽宁 沈阳 110870;
    2.北方民族大学 信息与计算科学学院, 宁夏 银川 750021
  • 收稿日期:2022-09-11 修回日期:2022-10-24 出版日期:2023-03-25 发布日期:2023-04-25
  • 通讯作者: 杜洪波(1977—),男,吉林榆树人,沈阳工业大学副教授。E-mail:duhongbo@sut.edu.cn
  • 基金资助:
    国家自然科学基金(11861003);辽宁省教育厅高等学校基本科研项目(LJKZ0157)

Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization

WANG Luna1, DU Hongbo1*, ZHU Lijun2   

  1. 1. School of Science, Shenyang University of Technology, Shenyang Liaoning 110870, China;
    2. School of Information and Computing Science, Northern University for Nationalities, Yinchuan Ningxia 750021, China
  • Received:2022-09-11 Revised:2022-10-24 Online:2023-03-25 Published:2023-04-25

摘要: 针对堆叠胶囊自编码器存在检测性能慢、不能更好挖掘图像局部特征的问题,本文提出基于流形正则的堆叠胶囊自编码器优化算法。采用Scharr滤波器对堆叠胶囊自编码器模型中的图像进行重建,加强图像目标检测的精度,并在损失函数中引入流形正则项,从而加强对原始数据空间局部特征的提取,最终使用基于流形正则的堆叠胶囊自编码器学习参数,选择出更加具有区别性的特征。在MNIST和Fashion MNIST数据集上的实验结果显示,该优化算法相比于原网络结构,图像分类准确率分别提高了0.26和9.23个百分点,且模型训练速度也得到较大提高。

关键词: 深度学习, 图像分类, 堆叠胶囊自编码器, 流形正则, 滤波器

Abstract: To solve the problem that stacked capsule autoencoder has slow detection performance and cannot better mine local features of images, an optimization algorithm of stacked capsule autoencoders based on manifold regularization was proposed. Firstly, by using the Scharr filter to reconstruct the image in the stacked capsule autoencoders model, the accuracy of image target detection was enhanced.Then, a manifold regular term was introduced into the loss function to enhance the extraction of local features in the original data space.Finally, the stacked capsule autoencoders based on manifold regularization was used to learn parameters to select more discriminative features. Experiments results on MNIST and Fashion MNIST datasets show that compared with the original network structure, the accuracy of image classification is improved by 0.26% and 9.23%, respectively, which greatly improves the training speed of the model.

Key words: deep learning, image classification, stacked capsule autoencoders, manifold regularization, filter

中图分类号: 

  • TP391.41
[1] TAN J N, OYEKAN J.Attention augmented convolutional neural network for acoustics based machine state estimation[J]. Applied Soft Computing,2021,110: 107630.DOI: 10.1016/J.ASOC.2021.107630.
[2] 陈兵,蒋行国.卷积神经网络用于人脸特征提取[J].现代电子技术,2022,45(18): 182-186. DOI: 10.16652/j.issn.1004-373x.2022.18.035.
[3] 田晟, 宋霖.基于CNN和Bagging集成的交通标志识别[J].广西师范大学学报(自然科学版),2022, 40(4): 35-46.DOI: 10.16088/j.issn.1001-6600.2021102203.
[4] ZHAO Z J, LI X W, LIU H Z, et al. Improved target detection algorithm based on libra R-CNN[J]. IEEE Access, 2020,8: 114044-114056.DOI: 10.1109/ACCESS.2020.3002860.
[5] 王连云,陶洪峰,徐琛, 等.基于多层训练干扰的CNN轴承故障诊断[J].控制工程,2022,29(9): 1652-1657. DOI: 10.14107/j.cnki.kzgc.20200786.
[6] LI G Q, WU J, DENG C, et al. Convolutional neural network-based Bayesian Gaussian mixture for intelligent fault diagnosis of rotating machinery[J]. IEEE Transactions on Instrumentation and Measurement, 2021,70: 3517410. DOI: 10.1109/TIM.2021.3080402.
[7] GUO S,YANG T,HUA H C,et al. Coupling fault diagnosis of wind turbine gearbox based on multitask parallel convolutional neural networks with overall information[J]. Renewable Energy,2021,178: 639-650.DOI: 10.1016/j.renene.2021.06.088.
[8] 郭文娟,冯全,李相周.基于农作物病害检测与识别的卷积神经网络模型研究进展[J].中国农机化学报,2022,43(10): 157-166.DOI: 10.13733/j.jcam.issn.2095-5553.2022.10.023.
[9] 杜菲,马天兵,胡伟康,等.基于小波变换和改进卷积神经网络的刚性罐道故障诊断[J].工矿自动化,2022,48(9): 42-48,62.DOI: 10.13272/j.issn.1671-251x.17964.
[10] SABOUR S,FROSST N,HINTON G E.Dynamic routing between capsules[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates, Inc., 2017: 3859-3869.
[11] HINTON G E, SABOUR S, FROSST N. Matrix capsules with EM routing[C]// International Conference on Learning Representations 2018. Vancouver: ICLR,2018: 1-15.
[12] ZHANG L H, EDRAKI M, QI G J.CapProNet: deep feature learning via orthogonal projections onto capsule subspace[C]// Advances in Neural Information Processing Systems 31 (NeurIPS 2018). Red Hook, NY: Curran Associates, Inc., 2018: 5819-5828.
[13] SHAHROUDNEJAD A, AFSHAR P, PLATANIOTIS K N. et al. Improved explainability of capsule networks: relevance path by agreement[C]// 2018 IEEE Global Conference on Signal and Information Processing(GlobalSIP). Piscataway, NJ: IEEE, 2018: 549-553. DOI: 10.1109/GlobalSIP.2018.8646474.
[14] DELIÈGE A, CIOPPA A, VAN DROOGENBROECK M. Hitnet: a neural network with capsules embedded in a Hit-or-Miss layer, extended with hybrid data augmentation and ghost capsules[EB/OL].(2018-06-18)[2022-09-11]. https://arxiv.org/abs/1806.06519. DOI: 10.48550/arXiv.1806.06519.
[15] DUARTE K, RAWAT Y S,SHAH M. VideoCapsuleNet: a simplified network for action detection[C]// Advances in Neural Information Processing Systems 31 (NeurIPS 2018). Red Hook, NY: Curran Associates, Inc., 2018: 7621-7630.
[16] GUGGLBERGER J,PEER D,RODRÍGUEZ-SÁNCHEZ A.Training deep capsule networks with residual connections[C]// Artificial Neural Networks and Machine Learning - ICANN 2021: LNCS Volume 12891. Cham: Springer Nature Switzerland AG, 2021: 541-552. DOI: 10.1007/978-3-030-86362-3_44.
[17] 曾岚蔚,许青林.基于深度卷积注意胶囊网络的微表情识别方法[J].计算机工程与设计,2022,43(9): 2631-2637. DOI: 10.16208/j.issn1000-7024.2022.09.030.
[18] 张凌慷,仝明磊.基于谱聚类胶囊网络的文本分类方法[J].科技创新与应用,2022,12(4): 16-19. DOI: 10.19981/j.CN23-1581/G3.2022.04.004.
[19] 暴雨轩. 基于深度学习的伪造人脸视频检测方法研究[D].北京: 中国人民公安大学,2022. DOI: 10.27634/d.cnki.gzrgu.2022.000196.
[20] SAHU S K, KUMAR P, SINGH A P. Dynamic routing using inter capsule routing protocol between capsules[C]// 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation(UKSim).Los Alamitos, CA: IEEE Computer Society, 2018: 1-5.DOI: 10.1109/UKSim.2018.00012.
[21] 林凯迪,杜洪波,朱立军.基于DPC优化动态路由的胶囊网络算法[J].沈阳工程学院学报(自然科学版),2021,17(2): 61-67.DOI: 10.13888/j.cnki.jsie(ns).2021.02.012.
[22] 李冰,崔艳荣.基于动态路由规则的胶囊网络模型研究[J].电脑编程技巧与维护,2022(8): 165-167, 175. DOI: 10.16184/j.cnki.comprg.2022.08.010.
[23] 雷建云,陈楚,郑禄,等.基于改进残差网络的水稻害虫识别[J].江苏农业科学,2022,50(14): 190-198. DOI: 10.15889/j.issn.1002-1302.2022.14.027.
[24] 张贤坤,陶健伟,董梅,等.多尺度自路由胶囊网络的构建方法[J].天津科技大学学报,2022,37(3): 59-66. DOI: 10.13364/j.issn.1672-6510.20210267.
[25] KOSIOREK A R, SABOUR S, TEH Y W, et al. Stacked capsule autoencoders[C]// Advances in Neural Information Processing Systems 32 (NeurIPS 2019).Red Hook, NY: Curran Associates, Inc., 2019: 15512-15522.
[26] DAI J Z, XIONG S W. An evasion attack against stacked capsule autoencoder[J]. Algorithms, 2022, 15(2): 32.DOI: 10.3390/a15020032.
[27] XIANG C Q,WANG Z N,ZOU W B,et al.DPR-CAE: capsule autoencoder with dynamic part represention for image parsing[EB/OL].(2021-09-07)[2022-09-11].https://arxiv.org/abs/2104.14735. DOI: 10.48550/arXiv.2104.14735.
[28] HONG C Q,CHEN L,LIANG Y X,et al.Stacked capsule graph autoencoders for geometry-aware 3D head pose estimation[J].Computer Vision and Image Understanding, 2021, 208/209: 103224.DOI: 10.1016/j.cviu.2021.103224.
[29] TANG C, BIAN M R, LIU X W, et al.Unsupervised feature selection via latent representation learning and manifold regularization[J]. Neural Networks, 2019,117: 163-178.DOI: 10.1016/j.neunet.2019.04.015.
[30] LIU X W, WANG L, ZHANG J, et al. Global and local structure preservation for feature selection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(6): 1083-1095.DOI: 10.1109/TNNLS.2013.2287275.
[31] PEÑA J M,LOZANO J A,LARRAÑAGA P. An empirical comparison of four initialization methods for the K-Means algorithm[J]. Pattern Recognition Letters,1999,20(10): 1027-1040. DOI: 10.1016/S0167-8655(99)00069-0.
[32] 袁非牛,章琳,史劲亭,等.自编码神经网络理论及应用综述[J].计算机学报,2019,42(1): 203-230.DOI: 10.11897/SP.J.1016.2019.00203.
[33] YANG B,FU X, SIDIROPOULOS N D,et al.Towards K-means-friendly spaces: simultaneous deep learning and clustering[C]// Proceedings of the 34th International Conference on Machine Learning: PMLR Volume 70. Sydney: PMLR, 2017: 3861-3870.
[34] JIANG Z X, ZHENG Y, TAN H C, et al. Variational deep embedding: an unsupervised and generative approach to clustering[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17).Melbourne: International Joint Conferences on Artifical Intelligence,2017: 1965-1972. DOI: 10.24963/ijcai.2017/273.
[35] 容培盛.基于无监督深度学习的图像聚类研究[D].杭州: 杭州电子科技大学,2020. DOI: 10.27075/d.cnki.ghzdc.2020.000288.
[1] 杨烁祯, 张珑, 王建华, 张恒远. 声音事件检测综述[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 1-18.
[2] 赵中华, 晏晓锋, 童有为. 基于自适应渐消扩展卡尔曼滤波的锂离子电池SOC估计[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 58-66.
[3] 钟辉, 宋树祥, 岑明灿, 蔡超波, 蒋品群, 刘振宇. 基于采样计算的差分N通道滤波器[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 58-67.
[4] 张萍, 徐巧枝. 基于多感受野与分组混合注意力机制的肺结节分割研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 76-87.
[5] 李永杰, 周桂红, 刘博. 基于YOLOv3模型的人脸检测与头部姿态估计融合算法[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 95-103.
[6] 马新娜, 赵猛, 祁琳. 基于卷积脉冲神经网络的故障诊断方法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 112-120.
[7] 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171.
[8] 闫龙川, 李妍, 宋浒, 邹昊东, 王丽君. 基于Prophet-DeepAR模型的Web流量预测[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 172-184.
[9] 路凯峰, 杨溢龙, 李智. 一种基于BERT和DPCNN的Web服务分类方法[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 87-98.
[10] 武康康, 朱旭飞, 陆叶, 周鹏, 董翠, 戴沁璇, 周闰昌. 基于最小二乘法的LS-FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 89-99.
[11] 吴玲玉, 蓝洋, 夏海英. 基于卷积神经网络的眼底图像配准研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 122-133.
[12] 陈文康, 陆声链, 刘冰浩, 李帼, 刘晓宇, 陈明. 基于改进YOLOv4的果园柑橘检测方法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 134-146.
[13] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9-20.
[14] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55-67.
[15] 杨州, 范意兴, 朱小飞, 郭嘉丰, 王越. 神经信息检索模型建模因素综述[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周正春. 互补序列研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 1 -16 .
[2] 杨烁祯, 张珑, 王建华, 张恒远. 声音事件检测综述[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 1 -18 .
[3] 杨生龙, 母庆闯, 张志华, 刘葵. 废旧锂离子电池回收利用技术进展[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 19 -26 .
[4] 李康良, 邱彩雄, 何爽, 黄春华, 伍冠一. 白介素-31参与瘙痒的研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 27 -35 .
[5] 卢许孟, 南新元, 夏斯博. 无模型坐标补偿积分滑模约束的自动驾驶汽车轨迹跟踪控制[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 36 -48 .
[6] 张伟健, 邴其春, 沈富鑫, 胡嫣然, 高鹏. 城市快速路路段行程时间估计方法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 49 -57 .
[7] 杨秀, 韦笃取. 基于单状态变量的永磁同步电机混沌跟踪控制[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 58 -66 .
[8] 赵媛, 宋树祥, 刘振宇, 岑明灿, 蔡超波, 蒋品群. 一种新型电流镜运算跨导放大器的设计[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 67 -75 .
[9] 赵明, 罗秋莲, 陈蔚萌, 陈嘉妮. 控制时机和力度对传染病传播的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 86 -97 .
[10] 杨秀凤, 范江华. 向量平衡问题强有效解集的连通性[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 98 -105 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发