|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (2): 76-85.doi: 10.16088/j.issn.1001-6600.2022091102
王鲁娜1, 杜洪波1*, 朱立军2
WANG Luna1, DU Hongbo1*, ZHU Lijun2
摘要: 针对堆叠胶囊自编码器存在检测性能慢、不能更好挖掘图像局部特征的问题,本文提出基于流形正则的堆叠胶囊自编码器优化算法。采用Scharr滤波器对堆叠胶囊自编码器模型中的图像进行重建,加强图像目标检测的精度,并在损失函数中引入流形正则项,从而加强对原始数据空间局部特征的提取,最终使用基于流形正则的堆叠胶囊自编码器学习参数,选择出更加具有区别性的特征。在MNIST和Fashion MNIST数据集上的实验结果显示,该优化算法相比于原网络结构,图像分类准确率分别提高了0.26和9.23个百分点,且模型训练速度也得到较大提高。
中图分类号:
[1] TAN J N, OYEKAN J.Attention augmented convolutional neural network for acoustics based machine state estimation[J]. Applied Soft Computing,2021,110: 107630.DOI: 10.1016/J.ASOC.2021.107630. [2] 陈兵,蒋行国.卷积神经网络用于人脸特征提取[J].现代电子技术,2022,45(18): 182-186. DOI: 10.16652/j.issn.1004-373x.2022.18.035. [3] 田晟, 宋霖.基于CNN和Bagging集成的交通标志识别[J].广西师范大学学报(自然科学版),2022, 40(4): 35-46.DOI: 10.16088/j.issn.1001-6600.2021102203. [4] ZHAO Z J, LI X W, LIU H Z, et al. Improved target detection algorithm based on libra R-CNN[J]. IEEE Access, 2020,8: 114044-114056.DOI: 10.1109/ACCESS.2020.3002860. [5] 王连云,陶洪峰,徐琛, 等.基于多层训练干扰的CNN轴承故障诊断[J].控制工程,2022,29(9): 1652-1657. DOI: 10.14107/j.cnki.kzgc.20200786. [6] LI G Q, WU J, DENG C, et al. Convolutional neural network-based Bayesian Gaussian mixture for intelligent fault diagnosis of rotating machinery[J]. IEEE Transactions on Instrumentation and Measurement, 2021,70: 3517410. DOI: 10.1109/TIM.2021.3080402. [7] GUO S,YANG T,HUA H C,et al. Coupling fault diagnosis of wind turbine gearbox based on multitask parallel convolutional neural networks with overall information[J]. Renewable Energy,2021,178: 639-650.DOI: 10.1016/j.renene.2021.06.088. [8] 郭文娟,冯全,李相周.基于农作物病害检测与识别的卷积神经网络模型研究进展[J].中国农机化学报,2022,43(10): 157-166.DOI: 10.13733/j.jcam.issn.2095-5553.2022.10.023. [9] 杜菲,马天兵,胡伟康,等.基于小波变换和改进卷积神经网络的刚性罐道故障诊断[J].工矿自动化,2022,48(9): 42-48,62.DOI: 10.13272/j.issn.1671-251x.17964. [10] SABOUR S,FROSST N,HINTON G E.Dynamic routing between capsules[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates, Inc., 2017: 3859-3869. [11] HINTON G E, SABOUR S, FROSST N. Matrix capsules with EM routing[C]// International Conference on Learning Representations 2018. Vancouver: ICLR,2018: 1-15. [12] ZHANG L H, EDRAKI M, QI G J.CapProNet: deep feature learning via orthogonal projections onto capsule subspace[C]// Advances in Neural Information Processing Systems 31 (NeurIPS 2018). Red Hook, NY: Curran Associates, Inc., 2018: 5819-5828. [13] SHAHROUDNEJAD A, AFSHAR P, PLATANIOTIS K N. et al. Improved explainability of capsule networks: relevance path by agreement[C]// 2018 IEEE Global Conference on Signal and Information Processing(GlobalSIP). Piscataway, NJ: IEEE, 2018: 549-553. DOI: 10.1109/GlobalSIP.2018.8646474. [14] DELIÈGE A, CIOPPA A, VAN DROOGENBROECK M. Hitnet: a neural network with capsules embedded in a Hit-or-Miss layer, extended with hybrid data augmentation and ghost capsules[EB/OL].(2018-06-18)[2022-09-11]. https://arxiv.org/abs/1806.06519. DOI: 10.48550/arXiv.1806.06519. [15] DUARTE K, RAWAT Y S,SHAH M. VideoCapsuleNet: a simplified network for action detection[C]// Advances in Neural Information Processing Systems 31 (NeurIPS 2018). Red Hook, NY: Curran Associates, Inc., 2018: 7621-7630. [16] GUGGLBERGER J,PEER D,RODRÍGUEZ-SÁNCHEZ A.Training deep capsule networks with residual connections[C]// Artificial Neural Networks and Machine Learning - ICANN 2021: LNCS Volume 12891. Cham: Springer Nature Switzerland AG, 2021: 541-552. DOI: 10.1007/978-3-030-86362-3_44. [17] 曾岚蔚,许青林.基于深度卷积注意胶囊网络的微表情识别方法[J].计算机工程与设计,2022,43(9): 2631-2637. DOI: 10.16208/j.issn1000-7024.2022.09.030. [18] 张凌慷,仝明磊.基于谱聚类胶囊网络的文本分类方法[J].科技创新与应用,2022,12(4): 16-19. DOI: 10.19981/j.CN23-1581/G3.2022.04.004. [19] 暴雨轩. 基于深度学习的伪造人脸视频检测方法研究[D].北京: 中国人民公安大学,2022. DOI: 10.27634/d.cnki.gzrgu.2022.000196. [20] SAHU S K, KUMAR P, SINGH A P. Dynamic routing using inter capsule routing protocol between capsules[C]// 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation(UKSim).Los Alamitos, CA: IEEE Computer Society, 2018: 1-5.DOI: 10.1109/UKSim.2018.00012. [21] 林凯迪,杜洪波,朱立军.基于DPC优化动态路由的胶囊网络算法[J].沈阳工程学院学报(自然科学版),2021,17(2): 61-67.DOI: 10.13888/j.cnki.jsie(ns).2021.02.012. [22] 李冰,崔艳荣.基于动态路由规则的胶囊网络模型研究[J].电脑编程技巧与维护,2022(8): 165-167, 175. DOI: 10.16184/j.cnki.comprg.2022.08.010. [23] 雷建云,陈楚,郑禄,等.基于改进残差网络的水稻害虫识别[J].江苏农业科学,2022,50(14): 190-198. DOI: 10.15889/j.issn.1002-1302.2022.14.027. [24] 张贤坤,陶健伟,董梅,等.多尺度自路由胶囊网络的构建方法[J].天津科技大学学报,2022,37(3): 59-66. DOI: 10.13364/j.issn.1672-6510.20210267. [25] KOSIOREK A R, SABOUR S, TEH Y W, et al. Stacked capsule autoencoders[C]// Advances in Neural Information Processing Systems 32 (NeurIPS 2019).Red Hook, NY: Curran Associates, Inc., 2019: 15512-15522. [26] DAI J Z, XIONG S W. An evasion attack against stacked capsule autoencoder[J]. Algorithms, 2022, 15(2): 32.DOI: 10.3390/a15020032. [27] XIANG C Q,WANG Z N,ZOU W B,et al.DPR-CAE: capsule autoencoder with dynamic part represention for image parsing[EB/OL].(2021-09-07)[2022-09-11].https://arxiv.org/abs/2104.14735. DOI: 10.48550/arXiv.2104.14735. [28] HONG C Q,CHEN L,LIANG Y X,et al.Stacked capsule graph autoencoders for geometry-aware 3D head pose estimation[J].Computer Vision and Image Understanding, 2021, 208/209: 103224.DOI: 10.1016/j.cviu.2021.103224. [29] TANG C, BIAN M R, LIU X W, et al.Unsupervised feature selection via latent representation learning and manifold regularization[J]. Neural Networks, 2019,117: 163-178.DOI: 10.1016/j.neunet.2019.04.015. [30] LIU X W, WANG L, ZHANG J, et al. Global and local structure preservation for feature selection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(6): 1083-1095.DOI: 10.1109/TNNLS.2013.2287275. [31] PEÑA J M,LOZANO J A,LARRAÑAGA P. An empirical comparison of four initialization methods for the K-Means algorithm[J]. Pattern Recognition Letters,1999,20(10): 1027-1040. DOI: 10.1016/S0167-8655(99)00069-0. [32] 袁非牛,章琳,史劲亭,等.自编码神经网络理论及应用综述[J].计算机学报,2019,42(1): 203-230.DOI: 10.11897/SP.J.1016.2019.00203. [33] YANG B,FU X, SIDIROPOULOS N D,et al.Towards K-means-friendly spaces: simultaneous deep learning and clustering[C]// Proceedings of the 34th International Conference on Machine Learning: PMLR Volume 70. Sydney: PMLR, 2017: 3861-3870. [34] JIANG Z X, ZHENG Y, TAN H C, et al. Variational deep embedding: an unsupervised and generative approach to clustering[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17).Melbourne: International Joint Conferences on Artifical Intelligence,2017: 1965-1972. DOI: 10.24963/ijcai.2017/273. [35] 容培盛.基于无监督深度学习的图像聚类研究[D].杭州: 杭州电子科技大学,2020. DOI: 10.27075/d.cnki.ghzdc.2020.000288. |
[1] | 杨烁祯, 张珑, 王建华, 张恒远. 声音事件检测综述[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 1-18. |
[2] | 赵中华, 晏晓锋, 童有为. 基于自适应渐消扩展卡尔曼滤波的锂离子电池SOC估计[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 58-66. |
[3] | 钟辉, 宋树祥, 岑明灿, 蔡超波, 蒋品群, 刘振宇. 基于采样计算的差分N通道滤波器[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 58-67. |
[4] | 张萍, 徐巧枝. 基于多感受野与分组混合注意力机制的肺结节分割研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 76-87. |
[5] | 李永杰, 周桂红, 刘博. 基于YOLOv3模型的人脸检测与头部姿态估计融合算法[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 95-103. |
[6] | 马新娜, 赵猛, 祁琳. 基于卷积脉冲神经网络的故障诊断方法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 112-120. |
[7] | 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171. |
[8] | 闫龙川, 李妍, 宋浒, 邹昊东, 王丽君. 基于Prophet-DeepAR模型的Web流量预测[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 172-184. |
[9] | 路凯峰, 杨溢龙, 李智. 一种基于BERT和DPCNN的Web服务分类方法[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 87-98. |
[10] | 武康康, 朱旭飞, 陆叶, 周鹏, 董翠, 戴沁璇, 周闰昌. 基于最小二乘法的LS-FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 89-99. |
[11] | 吴玲玉, 蓝洋, 夏海英. 基于卷积神经网络的眼底图像配准研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 122-133. |
[12] | 陈文康, 陆声链, 刘冰浩, 李帼, 刘晓宇, 陈明. 基于改进YOLOv4的果园柑橘检测方法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 134-146. |
[13] | 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9-20. |
[14] | 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55-67. |
[15] | 杨州, 范意兴, 朱小飞, 郭嘉丰, 王越. 神经信息检索模型建模因素综述[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 1-12. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |