广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (5): 89-99.doi: 10.16088/j.issn.1001-6600.2020072503

• 研究论文 • 上一篇    下一篇

基于最小二乘法的LS-FIR滤波器

武康康, 朱旭飞, 陆叶*, 周鹏, 董翠, 戴沁璇, 周闰昌   

  1. 广西师范大学 电子工程学院,广西 桂林 541004
  • 收稿日期:2020-07-25 修回日期:2020-10-15 出版日期:2021-09-25 发布日期:2021-10-19
  • 通讯作者: 陆叶(1989—),男,广西钦州人,广西师范大学讲师,硕士。E-mail:esbhsgxnu@163.com
  • 基金资助:
    广西科技计划(AB17292082,AB18126025)

LS-FIR Filter Based on Least Square Method

WU Kangkang, ZHU Xufei, LU Ye*, ZHOU Peng, DONG Cui, DAI Qinxuan, ZHOU Runchang   

  1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2020-07-25 Revised:2020-10-15 Online:2021-09-25 Published:2021-10-19

摘要: 本文提出一种基于最小二乘法的LS-FIR滤波器。根据色散补偿滤波器与有限长单位冲激响应的频域函数之间的关系构造线性方程组,线性方程组中独立方程的个数大于未知量个数,所以此方程组无解。但在最小范数意义下,能够找到一组解使得估计误差模的平方和最小,得到的解是最小二乘解。用所得到的最小二乘解作为滤波器的抽头权值,即是所要设计的滤波器。滤波器仿真结果表明:不同调制格式(QPSK、16QAM、64QAM)和信噪比(1~20)条件下,当全频带且滤波器的抽头数为315时,均方误差稳定于2.610 9×10-6;当窄频带滤波器的抽头数为197时,均方误差稳定于2.556 6×10-6;与FIR和Hm-FIR滤波器对比,LS-FIR滤波器算法具有较高的稳定度、较好的逼近效果,且滤波效果更佳。

关键词: LS-FIR滤波器, 最小范数, 估计误差, 最小二乘解, 抽头权值

Abstract: LS-FIR filter based on least square method is proposed in this paper. According to the relationship between dispersion compensation filter and frequency domain function of the finite length unit impulse response, the linear equations are constructed. Because the number of independent equations is larger than unknowns in the linear equations, the equations have no solution. However, in the sense of minimum norm, a set of solutions is found to minimize the sum of squares estimated error modes. These are the least square solutions, which are used as the tap weight of the filter, and then the filter that needs to be designed is obtained. The simulation results of filter show that under different modulation formats (QPSK, 16QAM, 64QAM) and different signal-to-noise ratios (1~20), in the whole frequency band, when the number of taps is 315, the mean square error reaches 2.610 9×10-6; In the narrow band, when the number of taps is 197, the mean square error reaches 2.556 6×10-6; Compared with filters of FIR and Hm-FIR, the algorithm of LS-FIR has higher stability, better approximation effect, and better filtering effect.

Key words: LS-FIR filter, minimum norm, estimation error, least square solution, tap weight

中图分类号: 

  • TN713
[1] ZHENG L,NI M M,CAI L,et al. Performance analysis of group-synchronized DCF for dense IEEE 802.11 networks[J]. IEEE Transactions on Wireless Communications,2014,13(11):6180-6192. DOI:10.1109/TWC.2014.2337315.
[2] FEHENBERGER T,ALVARADO A,BAYVEL P, et al. On achievable rates for long-haul fiber-optic communications[J]. Optics Express,2015,23(7):9183-9191. DOI:10.1364/OE.23.009183.
[3] 张帆.高速光纤传输技术进展[J].光通信研究,2017(6):2-11,27.DOI:10.13756/j.gtxyj.2017.06.001.
[4] GOLDFARB G,LI G F. Chromatic dispersion compensation using digital IIR filtering with coherent detection[J]. IEEE Photonics Technology Letters,2007,19(13):969-971.DOI:10.1109/LPT.2007.898819.
[5] YU Y,YIN H W,HUANG Z P. Simulation study of DP-QPSK coherent detection transmission system based on optisystem[J]. Optics and Photonics Journal,2020,10(6):134-140.DOI:10.4236/opj.2020.106014.
[6] EL-NAHAL F I,ABUALOFF N M . Coherent optical communication systems based on orthogonal frequency division multiplexing[J]. Optoelectronics Letters, 2020, 16(4):303-305.DOI:10.1007/s11801-020-9166-2.
[7] XU T H,JACOBSEN G,POPOV S,et al. Normalized LMS digital filter for chromatic dispersion equalization in 112-Gbit/s PDM-QPSK coherent optical transmission system[J]. Optics Communications,2010,283(6):963-967.DOI:10.1016/j.optcom.2009.11.011.
[8] EGHBALI A,JOHANSSON H, GUSTAFSSON O,et al. Optimal least-squares FIR digital filters for compensation of chromatic dispersion in digital coherent optical receivers[J]. Journal of Lightwave Technology,2014,32(8):1449-1456.DOI:10.1109/JLT.2014.2307916.
[9] 陈兰霞,王辉.基于LMS算法的可见光通信自适应均衡技术[J].光通信研究,2016(3):65-68.DOI:10.13756/j.gtxyj.2016.03.021.
[10] SLIM I,MEZGHANI A,BALTAR L G,et al. Delayed single-tap frequency-domain chromatic-dispersion compensation[J]. IEEE Photonics Technology Letters,2013, 25(2):167-170.DOI:10.1109/LPT.2012.2231064.
[11] OTUYA D O,KASAI K,YOSHIDA M,et al. A single-channel 1.92 T bit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization[J]. Optics Express,2013,21(19):22808-22816.DOI:10.1364/OE.21.022808.
[12] KUDO R,KOBAYASHI T,ISHIHARA K, et al. Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems[J]. Journal of Lightwave Technology,2009,27(16):3721-3728.DOI:10.1109/JLT.2009.2024091.
[13] PITTALÀ F,SLIM I, MEZGHANI A,et al. Training-aided frequency-domain channel estimation and equalization for single-carrier coherent optical transmission systems[J]. Journal of Lightwave Technology,2014,32(24):4849-4863.DOI:10.1109/JLT.2014.2358933.
[14] ZHU G J,RUAN X K,ZHOU Z L. Dispersion characteristics and compensation in the POLMUX coherent optical communication system[J]. Modern Physics Letters B,2017,31(19/20/21):1740054.DOI:10.1142/S0217984917400541.
[15] ZHANG N N,YI W, ZHENG Z B,et al. Joint equalization of linear impairments using two-stage cascade Kalman filter structure in coherent optical communication systems[J]. Optics Communications,2019,453:124398.DOI:10.1016/j.optcom.2019.124398.
[16] LAVERY D,MAHER R,MILLAR D S,et al. Digital coherent receivers for long-reach optical access networks[J]. Journal of Lightwave Technology,2013,31(4):609-620.DOI:10.1109/JLT.2012.2224847.
[17] SAVORY S J. Digital filters for coherent optical receivers[J]. Optics Express,2008,16(2):804-817.DOI:10.1364/OE.16.000804.
[18] LIU Y M,ZHANG Y H,PENG Y F,et al. Equalization of chromatic dispersion using wiener filter for coherent optical receivers[J]. IEEE Photonics Technology Letters,2016,28(10):1092-1095.DOI:10.1109/LPT.2016.2530980.
[19] 赵衍策. 高速相干光通信系统中色散均衡方法的研究 [D]. 长春:吉林大学,2018.
[20] 王红恩. 相干光通信系统中载波频偏和相位恢复算法研究 [D]. 北京:北京邮电大学,2019.
[21] CZEGLEDI C B,LIGA G,LAVERY D,et al. Digital backpropagation accounting for polarization-mode dispersion[J]. Optics Express,2017,25(3):1903-1915. DOI:10.1364/OE.25.001903.
[22] WANG X Z,CALABRO S,SPINNLER B. Advanced receiver design enables PDM-16QAM WDM transmission over 2660 km of SSMF with only EDFA [C] // ECOC 2016 - 42nd European Conference on Optical Communication. Piscataway, NJ:IEEE, 2016:1181-1183.
[23] TAYLOR M G. Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments[J]. IEEE Photonics Technology Letters,2004,16(2):674-676. DOI:10.1109/LPT.2003.823106.
[24] KIKUCHI K. Fundamentals of coherent optical fiber communications[J]. Journal of Lightwave Technology, 2016, 34(1):157-179. DOI:10.1109/JLT.2015.2463719.
[25] 张先才,邓见光,安妮,等.一种基于高等代数的线性最小二乘问题的解法[J].东莞理工学院学报,2020,27(5):1-7. DOI:10.16002/j.cnki.10090312.2020.05.001.
[26] 林宏,周传璘,赵娜,等. 仿真分析相干光通信中的数字信号处理算法[J].现代电子技术,2019,42(19):54-58. DOI:10.16652/j.issn.1004-373x.2019.19.013.
[27] LAVERY D,IVES D,LIGA G,et al. The benefit of split nonlinearity compensation for single channel optical fiber communications[J]. IEEE Photonics Technology Letters,2016,28(17):1803-1806. DOI:10.1109/LPT.2016.2572359.
[28] SEMRAU D,LAVERY D,GALDINO L,et al. The impact of transceiver noise on digital nonlinearity compensation[J]. Journal of Lightwave Technology,2018,36(3):695-702. DOI:10.1109/JLT.2017.2777452.
[29] 黄峻堃,张少武,万冲. 非线性色散对高斯脉冲传输的影响[J].量子电子学报,2018,35(5):603-607.
[30] CARTLEDGE J C,GUIOMAR F P,KSCHISCHANG F R,et al. Digital signal processing for fiber nonlinearities[J]. Optics Express,2017,25(3):1916-1936. DOI:10.1364/OE.25.001916.
[31] 祝贵君. 高速光通信中的电域色散补偿算法研究 [D]. 温州:温州大学,2018.
[32] 王晓乐.通信工程中光纤技术的设计应用和发展趋势[J].通信电源技术,2018,35(2):186-187. DOI:10.19399/j.cnki.tpt.2018.02.082.
[33] 史继荣,刘琳. 2.5 Gbit/s相干光通信系统的研究[J]. 上海电气技术,2019,12(3):14-16.
[34] 曹文华. 准线性光纤传输系统中几种色散补偿方案的性能比较[J].光学学报,2018,38(4):0406002.
[35] RIBEIRO V B,OLIVEIRA J C R F,DINIZ J C M,et al. Enhanced digital polarization demultiplexation via CMA step size adaptation for PM-QPSK coherent receivers [C] // 2012 Optical Society of America. Piscataway, NJ:IEEE,2012. DOI:10.1364/OFC.2012.OW3H.4.
[1] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周炎岩, 冯嘉礼. 基于定性映射的数字音频水印算法[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 200 -204 .
[2] 邓敏艺, 谭惠丽. 一个双变量元胞自动机模型的定性研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 1 -6 .
[3] 王桂芝, 吕肖君, 陆金帅, 李洁. 基于AHM算法的流动人口迁移满意度研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 7 -12 .
[4] 乐美龙, 张健泽. 基于风险规避的航班舱位分配控制研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 27 -33 .
[5] 李靖建, 徐尚进, 王蕊. 具有交换点稳定子群的6度1-正则Cayley图[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 51 -54 .
[6] 钟祥贵, 赵娜, 黄秀女, 段建良. SS-半置换子群与有限群的p-幂零性[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 14 -17 .
[7] 张刘生, 潘成学, 李丽, 苏桂发, 黄婉云, 覃江克, 唐煌. 含环丙烷氨基酸残基的构象限制二肽的合成及其晶体结构研究[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 37 -42 .
[8] 张玮, 纪淑娟, 梁永全. 火灾救援中的最优资源分配方案[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 192 -196 .
[9] 郭珺, 陈丹, 朱婵, 唐宗湘. 白芷水提液镇痛作用及其机理研究[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 103 -110 .
[10] 胡郁葱, 张曼莹. 电动公交车不同充电模式发车计划与充电费用研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 10 -18 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发