广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (2): 67-75.doi: 10.16088/j.issn.1001-6600.2022040807

• 研究论文 • 上一篇    下一篇

一种新型电流镜运算跨导放大器的设计

赵媛1, 宋树祥1*, 刘振宇1,2, 岑明灿1, 蔡超波1, 蒋品群1   

  1. 1.广西师范大学 电子工程学院,广西 桂林 541004;
    2.广西工商技师学院,广西 梧州 543000
  • 收稿日期:2022-04-08 修回日期:2022-05-30 出版日期:2023-03-25 发布日期:2023-04-25
  • 通讯作者: 宋树祥(1970—),男,湖南双峰人,广西师范大学教授,博导。E-mail:songshuxiang@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(62061005);广西研究生教育创新计划项目(YCSW2021070);广西高校中青年教师科研基础能力提升项目(2020KY02028)

Design of a Novel Current-Mirror Operational Transconductance Amplifier

ZHAO Yuan1, SONG Shuxiang1*, LIU Zhenyu1,2, CEN Mingcan1, CAI Chaobo1, JIANG Pinqun1   

  1. 1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Guangxi Technician College of Business, Wuzhou Guangxi 543100, China
  • Received:2022-04-08 Revised:2022-05-30 Online:2023-03-25 Published:2023-04-25

摘要: 针对传统低压微功耗电流镜运算跨导放大器存在低增益和小摆率的缺陷,设计了一款新型电流镜运算跨导放大器。在不影响电路的静态功耗和稳定性的基础上,该运算跨导放大器采用增益提高(gain-boosting,GB)结构,增大了电路的小信号增益;引入开关型摆率增强(switched slew-rate enhancement,SSRE)结构,提高了电路的大信号摆率。基于UMC 0.11 μm标准CMOS工艺进行电路设计和仿真。仿真结果表明:在1.2 V电源电压和10 pF负载电容下,与传统电流镜运算跨导放大器相比,设计的新型电流镜运算跨导放大器的增益提高了47 dB,正摆率提高了11.2倍,负摆率提高了12.4倍。

关键词: 增益提高, 摆率增强, 低功耗, 低电压, 电流镜, 运算跨导放大器

Abstract: A novel current-mirror operational transconductance amplifier was designed to overcome the disadvantages of low gain and small swing rate in traditional low-voltage micro-power current-mirror operational transconductance amplifier. Without affecting the static power consumption and stability of the circuit, the operational transconductance amplifier adopted gain boosting(GB)structure to increase the small signal gain of the circuit; the switched slow rate enhancement(SSRE)structure was introduced to improve the large signal swing rate of the circuit. The circuit was designed and simulated based on UMC 0.11μm standard CMOS process. The simulation results show that under 1.2 V power supply voltage and 10 pF load capacitance, and compared with the traditional current mirror operational transconductance amplifier, the gain of the new current mirror operational transconductance amplifier is increased by 47 dB, the positive slew rate is increased by 11.2 times and the negative slew rate is increased by 12.4 times.

Key words: gain boosting, slew-rate enhancement, low power, low voltage, current-mirror, operational transconductance amplifier

中图分类号: 

  • TN722.77
[1] HUNG C H, ZHENG Y Q, GUO J P, et al.Bandwidth and slew rate enhanced OTA with sustainable dynamic bias[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(4): 635-639.
[2] 凡东东, 宋树祥, 蒋品群,等.新型高增益CMOS跨导运算放大器[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 6-10.
[3] 谢海情, 陈玉辉, 王振宇.一种低压低功耗恒跨导轨到轨运算放大器设计[J].电子元件与材料, 2020, 39(10): 65-69.
[4] LUO H, HAN Y, CHEUNG R C C, et al. A 0.8-V 230-μW 98-dB DR inverter-based ∑Δ modulator for audio applications[J]. IEEE Journal of Solid-State Circuits, 2013, 48(10): 2430-2441.
[5] LEE H, MOK P K T, LEUNG K N.Design of low-power analog drivers based on slew-rate enhancement circuits for CMOS low-dropout regulators[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2005, 52(9): 563-567.
[6] BU S, TSE H W, LEUNG K N, et al. Gain and slew rate enhancement for amplifiers through current starving and feeding[C]// 2015 IEEE International Symposium on Circuits and Systems (ISCAS).Piscataway, NJ: IEEE, 2015: 2073-2076. DOI: 10.1109/ISCAS.2015.7169086.
[7] YAN Z S, MAK P I, LAW M K, et al. Nested-current-mirror rail-to-rail-output single-stage amplifier with enhancements of DC gain, GBW and slew rate[J]. IEEE Journal of Solid-State Circuits, 2015, 50(10): 2353-2366.
[8] BELOSO-LEGARRA J, DE LACRUZ-BLAS C A, LOPEZ-MARTIN A J, et al. Gain-boosted super class AB OTAs based on nested local feedback[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(9): 3562-3573.
[9] LEE S Y, SU P H, HUANG K L, et al. High-pass sigma-delta modulator with techniques of operational amplifier sharing and programmable feedforward coefficients for ECG signal acquisition[J]. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15(3): 443-453.
[10] 孙帆, 黄海波, 王卫华.基于高摆率误差放大器的无片外电容LDO设计[J].电子元件与材料, 2022, 41(2): 206-212.
[11] 拉扎维. 模拟CMOS集成电路设计[M]. 陈贵灿,程军,张瑞智,等译.西安:西安交通大学出版社, 2003.
[12] 吴锋霖, 李思臻, 余凯, 等. 一种增益提升和摆率增强的运算跨导放大器[J]. 电子技术应用, 2020, 46(7): 65-69.
[13] 王梦海, 张春茗, 严展科. 一种增益和摆率提升的电流镜运算放大器[J]. 微电子学, 2019,49(4): 452-456.
[14] YAO L B, STEYAERT M S J, SANSEN W. A 1-V 140-μW 88-dB audio sigma-delta modulator in 90-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2004, 44(11): 1809-1818.
[15] KUO P Y, TSAI S D, et al. An enhanced scheme of multi-stage amplifier with high-speed high-gain blocks and recycling frequency cascode circuitry to improve gain-bandwidth and slew rate[J]. IEEE Access, 2019, 7: 130820-130829.
[16] FEIZBAKHSH S V, YOSEFI G. An enhanced fast slew rate recycling folded cascode Op-Amp with general improvement in 180 nm CMOS process[J]. AEU-International Journal of Electronics and Communications, 2019, 101: 200-217.
[17] DONG L Y, ZHAO X, WANG Y Q.Design of an adaptively biased low-dropout regulator with a current reusing current-mode OTA using an intuitive analysis method[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10477-10488.
[18] 宁宁, 倪春晓, 李靖,等. 高性能AB类折叠共源共栅CMOS放大器设计[J]. 微电子学, 2013, 43(3): 333-336.
[19] WANG Y Q, ZHANG Q S, YU S S, et al. A robust local positive feedback based performance enhancement strategy for non-recycling folded cascode OTA[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(9): 2897-2908.
[20] 范国亮, 张国俊. 一种增益提升和摆率增强的电流镜放大器[J]. 微电子学, 2016,46(3): 289-292.
[21] AKBARI M, HASHEMIPOUR O, MORADI F. A high slew rate CMOS OTA with dynamic current boosting paths[C]// 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway, NJ: IEEE, 2018: 1-5. DOI: 10.1109/ISCAS.2018.8350926.
[1] 刘振宇, 宋树祥, 岑明灿, 蒋品群, 蔡超波. 低功耗高精度Sigma-Delta调制器的建模与设计[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 58-70.
[2] 邓亚彬,蒋品群,宋树祥. 新型低压微功耗伪差分跨导放大器设计[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 17-24.
[3] 周述, 蒋品群, 宋树祥. 2.8~8.5 GHz 全集成高增益低功耗超宽带低噪声放大器设计[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 9-16.
[4] 蔡超波, 凡东东, 宋树祥, 岑明灿. 一款带POR的可校正低功耗电压基准源[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周正春. 互补序列研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 1 -16 .
[2] 杨烁祯, 张珑, 王建华, 张恒远. 声音事件检测综述[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 1 -18 .
[3] 杨生龙, 母庆闯, 张志华, 刘葵. 废旧锂离子电池回收利用技术进展[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 19 -26 .
[4] 李康良, 邱彩雄, 何爽, 黄春华, 伍冠一. 白介素-31参与瘙痒的研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 27 -35 .
[5] 卢许孟, 南新元, 夏斯博. 无模型坐标补偿积分滑模约束的自动驾驶汽车轨迹跟踪控制[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 36 -48 .
[6] 张伟健, 邴其春, 沈富鑫, 胡嫣然, 高鹏. 城市快速路路段行程时间估计方法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 49 -57 .
[7] 杨秀, 韦笃取. 基于单状态变量的永磁同步电机混沌跟踪控制[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 58 -66 .
[8] 王鲁娜, 杜洪波, 朱立军. 基于流形正则的堆叠胶囊自编码器优化算法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 76 -85 .
[9] 赵明, 罗秋莲, 陈蔚萌, 陈嘉妮. 控制时机和力度对传染病传播的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 86 -97 .
[10] 杨秀凤, 范江华. 向量平衡问题强有效解集的连通性[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 98 -105 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发