|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (2): 106-117.doi: 10.16088/j.issn.1001-6600.2022033102
宋冰, 张育茹, 桑媛, 张龙*
SONG Bing, ZHANG Yuru, SANG Yuan, ZHANG Long*
摘要: 本文提出一类具有饱和发生率和抗体免疫反应的细胞内感染的时滞HIV感染模型,包括未感染细胞、潜伏感染细胞、感染细胞、游离HIV病毒和CTL免疫反应细胞。考虑4种时滞:潜伏感染时滞、细胞内时滞、感染细胞转化病毒时滞和CTL免疫反应时滞。定义2个阈值:感染基本再生数R0和CTL免疫再生数 R1,得到了模型的3类平衡点:无感染平衡点、免疫灭活感染平衡点和免疫激活感染平衡点。通过分析特征方程、构造 Lyapunov 函数和 LaSalle 不变原理,建立了各平衡点局部以及全局渐近稳定性的判定准则。
中图分类号:
[1] BONHOEFFER S, MAY R M, SHAW G M, et al. Virus dynamics and drug therapy[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(13): 6971-6976. DOI: 10.1073/pnas.94.13.6971. [2] ANDERSON R M, MAY R M. Infectious diseases of humans: dynamics and control[M]. Oxford: Oxford Universtiy Press, 1991. [3] ELAIW A M, AZOZ S A. Global properties of a class of HIV infection models with Beddington-DeAngelis functional response[J]. Mathematical Methods in the Applied Sciences, 2013, 36(4): 383-394. DOI: 10.1002/mma.2596. [4] ROSEN H R. Chronic hepatitis C infection[J]. The New England Journal of Medicine, 2011, 364(25): 2429-2438. DOI: 10.1056/NEJMcp1006613. [5] DAVIES S E, PORTMANN B C, O'GRADY J G, et al. Hepatic histological findings after transplantation for chronic hepatitis B virus infection, including a unique pattern of fibrosing cholestatic hepatitis[J]. Hepatology, 1991, 13(1): 150-157. DOI: 10.1002/hep.1840130122. [6] RIHAN F A, ALSAKAJI H J, RAJIVGANTHI C. Stochastic SIRC epidemic model with time delay for COVID-19[J]. Advances in Difference Equations, 2020, 2020(1): 502. DOI: 10.1186/s13662-020-02964-8. [7] DEANS J A, COHEN S. Immunology of Malaria[J]. Annual Review of Microbiology, 1983, 37(1): 25-50. DOI: 10.1146/annurev.mi.37.100183.000325. [8] ZHOU X R, ZHANG L, ZHENG T, et al. Global stability for a delayed HIV reactivation model with latent infection and Beddington-DeAngelis incidence[J]. Applied Mathematics Letters, 2021, 117: 107047. DOI: 10.1016/j.aml.2021.107047. [9] ZHOU X R, ZHANG L, ZHENG T, et al. Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. DOI: 10.3934/mbe.2020250. [10] CHEN W, TENG Z D, ZHANG L. Global dynamics for a drug-sensitive and drug-resistant mixed strains of HIV infection model with saturated incidence and distributed delays[J]. Applied Mathematics and Computation, 2021, 406: 126284. DOI: 10.1016/j.amc.2021.126284. [11] ZHENG T, LOU Y T, ZHANG L, et al. Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence[J/OL]. Communication on Pure and Applied Analysis. [2022-03-31]. https://www.aimsciences.org/cpaa. DOI: 10.3934/cpaa.2021154. [12] 眭鑫, 刘贤宁, 周林. 具有潜伏细胞和CTL免疫反应的HIV模型的稳定性分析[J]. 西南大学学报(自然科学版), 2012, 34(5): 23-27. DOI: 10.13718/j.cnki.xdzk.2012.05.004. [13] 周欣然, 郑涛, 张龙. 具有Beddington-DeAngelis功能反应和分布时滞的病毒动力学模型的稳定性[J]. 华南师范大学学报(自然科学版), 2020, 52(5): 118-123. DOI: 10.6054/j.jscnun.2020084. [14] 王秀男. HIV感染动力学模型分析[D]. 重庆:西南大学, 2013. [15] 闫冬雪. 几类结构种群和HIV模型的渐近行为分析[D]. 上海:华东师范大学, 2019. [16] NOWAK M A, BANGHAM C R. Population dynamics of immune responses to persistent viruses[J]. Science, 1996, 272(5258): 74-79. DOI: 10.1126/science.272.5258.74. [17] YUAN Z H, MA Z J, TANG X H. Global stability of a delayed HIV infection model with nonlinear incidence rate[J]. Nonlinear Dynamics, 2012, 68(1/2): 207-214. DOI: 10.1007/s11071-011-0219-8. [18] WANG Z P, XU R. Stability and Hopf bifurcation in a viral infection model with nonlinear incidence rate and delayed immune response[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(2): 964-978. DOI: 10.1016/j.cnsns.2011.06.024. [19] LIU W M, HETHCOTE H W, LEVIN S A. Dynamical behavior of epidemiological models with nonlinear incidence rates[J]. Journal of Mathematical Biology, 1987, 25(4): 359-380. DOI: 10.1007/BF00277162. [20] REGOES R R, EBERT D, BONHOEFFER S. Dose-dependent infection rates of parasites produce the Allee effect in epidemiology[J]. Proceedings of the Royal Society B: Biological Sciences, 2002, 269(1488): 271-279. DOI: 10.1098/rspb.2001.1816. [21] SONG X Y, NEUMANN A U. Global stability and periodic solution of the viral dynamics[J]. Journal of Mathematical Analysis and Applications, 2007, 329(1): 281-297. DOI: 10.1016/j.jmaa.2006.06.064. [22] WANG K F, WANG W D, PANG H Y. Complex dynamic behavior in a viral model with delayed immune response[J].Physica D:Nonlinear Phenomena, 2007, 226(2): 197-208. DOI: 10.1016/j.physd.2006.12.001. [23] CANABARRO A A, GLÉRIAl I M, LYRA M L. Periodic solutions and chaos in a non-linear model for the delayed cellular immune response[J]. Physica A:Statistical Mechanics and its Applications, 2004, 342(1-2): 234-241. DOI: 10.1016/j.physa.2004.04.083. [24] ZHU H Y, LUO Y, CHEN M L. Stability and Hopf bifurcation of an HIV infection model with CTL-response delay[J]. Computers and Mathematics with Applications, 2011, 62(8): 3091-3102. DOI: 10.1016/j.camwa.2011.08.022. [25] BERETTA E, KUANG Y. Geometric stability switch criteria in delay differential systems with delay dependent parameters[J]. SIAM Journal on Mathematical Analysis, 2002, 33(5): 1144-1165. DOI: 10.1137/S0036141000376086. [26] WANG T L, HU Z X, LIAO F C, et al. Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity[J]. Mathematics and Computers in Simulation, 2013, 89: 13-22. DOI: 10.1016/j.matcom.2013.03.004. [27] ZHOU X Y, SONG X Y, SHI X Y. Analysis of stability and Hopf bifurcation for an HIV infection model with time delay[J]. Applied Mathematics and Computation, 2008, 199(1): 23-38. DOI: 10.1016/j.amc.2007.09.030. [28] HETHCOTE H W, van den DRIESSCHE P. Two SIS epidemiologic models with delays[J]. Journal of Mathematical Biology, 2000, 40(1): 3-26. DOI: 10.1007/s002850050003. [29] WANG J L, PANG J M, KUNIYA T, et al. Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays[J]. Applied Mathematics and Computation, 2014, 241(15): 298-316. DOI: 10.1016/j.amc.2014.05.015. [30] BAGASRA O, POMERANTZ R J. Human immunodeficiency virus type I provirus is demonstrated in peripheral blood monocytes in vivo: a study utilizing an in situ polymerase chain reaction[J]. Aids Research and Human Retroviruses, 1993, 9(1): 69-76. DOI: 10.1089/aid.1993.9.69. [31] PACE M J, AGOSTO L, GRAF E H, et al.HIV reservoirs and latency models[J]. Virology, 2011, 411(2): 344-354. DOI: 10.1016/j.virol.2010.12.041. [32] WANG H B, XU R. Stability and Hopf bifurcation in an HIV-1 infection model with latently infected cells and delayed immune response[J]. Discrete Dynamics in Nature and Society, 2013,2013: 169427. DOI: 10.1155/2013/169427. [33] XU R. Global dynamics of an HIV-1 infection model with distributed intracellular delays[J]. Computers and Mathematics with Applications, 2011, 61(9): 2799-2805. DOI: 10.1016/j.camwa.2011.03.050. [34] ZOU D Y, WANG S F, LI X Z. Global dynamics for a live-virus-blood model with distributed time delay[J]. International Journal of Biomathematics, 2017, 10(5): 1750067. DOI: 10.1142/S179352451750067X. [35] HALE J K, VERDUYN LUNEL S M. Introduction to functional differential equations[M]. New York: Springer, 1993. [36] SMITH H L. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems[M]. Providence: American Mathematical Society, 1995. [37] van den DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2): 29-48. DOI: 10.1016/S0 025-5564(02)00108-6. [38] SHU H Y, WANG L, WATMOUGH J. Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses[J]. SIAM Journal on Applied Mathematics, 2013, 73(3): 1280-1302. DOI: 10.1137/120896463. [39] ZHOU X Y, SHI X Y, ZHANG Z H, et al. Dynamical behavior of a virus dynamics model with CTL immune response[J]. Applied Mathematics and Computation, 2009, 213(2): 329-347. DOI: 10.1016/j.amc.2009.03.026. [40] 马知恩, 周义仓. 常微分方程稳定性与稳定性方法[M]. 北京: 科学出版社, 2001. [41] 马知恩, 周义仓, 王稳地,等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社,2004. |
[1] | 郑涛, 周欣然, 张龙. 三种群捕食-竞争-合作混杂模型的全局渐近稳定性[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 64-70. |
[2] | 苗新艳, 张龙, 罗颜涛, 潘丽君. 一类交替变化的竞争—合作混杂种群模型研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 25-31. |
[3] | 邢伟, 高晋芳, 颜七笙, 周其华. 具有非线性传染率及脉冲免疫接种的SIQR传染病模型[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 58-65. |
[4] | 韩彩虹, 李略, 黄丽丽. 一类差分方程的全局渐近稳定性[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 53-57. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |