广西师范大学学报(自然科学版) ›› 2012, Vol. 30 ›› Issue (2): 66-70.

• • 上一篇    下一篇

局部遍历随机环境下一个重伸缩过程收敛的结果

胡华   

  1. 宁夏大学数学计算机学院,宁夏银川750021
  • 收稿日期:2012-01-15 出版日期:2012-06-20 发布日期:2018-12-03
  • 通讯作者: 胡华(1962—),男,宁夏中宁人,宁夏大学教授。E-mail:huhuanum@163.com
  • 基金资助:
    国家自然科学基金资助项目(61063020);宁夏自然科学基金资助项目(NZ1050);宁夏研究生教育创新计划项目(2010)

A Convergence Result of a Rescale Process Within Locally Ergodic Random Environment

HU Hua   

  1. School of Mathematics and Computer Science,Ningxia University,Yinchuan Ningxia 750021,China
  • Received:2012-01-15 Online:2012-06-20 Published:2018-12-03

摘要: 考虑一个重伸缩过程(Xη,εt)t≥0,假设{η(x)}x∈Z是由局部遍历性的概率测度分布的,本文研究此过程当ε→0时的极限。证明了在局部遍历性分布条件下,对于R上的二阶连续可微函数f(X)和某个与η独立的齐次扩散函数a(X),这个重伸缩过程依分布με收敛到R上具有无穷小生成元ddXa(X)ddXf(X)的扩散过程。

关键词: 局部遍历性, 随机游动, 重伸缩过程, 无穷小生成元

Abstract: This paper considers a rescaled process (Xη,εt)t≥0,and it's assumed that {η(x)}x∈Zis distributed by a locally ergodic probability measure.The limit of the rescaled process is studied as ε→0.It is proved that under local ergodicity distributions,the rescaled process converges in distribution με to the diffusion process on R with infinitesimal generator ddXa(X)ddXf(X),for second-order continuous differentiablefunction f(X) on R and a certain homogenized diffusion functiona(X) which is independent of η.

Key words: locally ergodic, random walk, rescaled process, infinitesimal generator

中图分类号: 

  • O211.6
[1] KOZLOV S M.The method of averaging and walks in inhomogeneous environments[J].Russian Math Surveys,1985,40(2):73-145.
[2] 李勇.一类平移不变无穷粒子反应扩散过程的遍历性[J].数学年刊:A辑,1995,16(2):223-229.
[3] SIRI P.Asymptotic behaviour of a tagged particle in an inhomogeneous zero-range process[J].Stochastic Process Appl,1998,77(2):139-154.
[4] GRIGORESCU I.Self-diffusion for Brownian motions with local interaction[J].Ann Probab,1999,27(3):1208-1267.
[5] 周宗林.关于一类非平衡交互作用粒子系统的相变[J].数学年刊:A辑,1996,17(3):301-310.
[6] 王子亭.随机介质中扩散过程的尺度跃迁[J].数学的实践与认识,2001,31(5):550-555.
[7] ANSHELEVICH V V,KHANIN K M,SINAI Y G.Symmetric random walks in random environments[J].Comm Math Phys,1982,85(3):449-470.
[8] KUNNEMANN R.The diffusion limit for reversible jump processes onZd
with ergodic random bond conductivities[J].Comm Math Phys,1983,90(1):27-68.
[9] De MASI A,FERRARI P A,GOLDSTEIN S,et al.An invariance principle forreversible Markov processes.Applications to random motions in random environments[J].J Statist Phys,1989,55(3/4):787-855.
[10] KIPNIS C,VARADHAN S R S.Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions[J].Comm Math Phys,1986,104(1):1-19.
[11] STROOCK D W,ZHENG Wei-an.Markov chain approximations to symmetric diffusions[J].Ann Inst Henri Poincare:ProbabStatist,1997,33(5):619-649.
[12] FABES E,STROOCK D W.The De Giorgi-Moser Harnack principle via the old ideas of Nash[J].Arch Rational Mech Anal,1987,96(4):327-338.
[13] CARLEN E,KUSUOKA S,STROOCK D W.Upper bounds for symmetric Markovtransition functions[J].Ann Inst Henri Poincare:Probab Statist,1987,23(2):245-287.
[1] 熊晨旭, 韦妙云, 唐胜达. 基于事件驱动的通信卫星传输功率的最优控制[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 94-102.
[2] 温鲜, 邓国和. 随机波动率下障碍期权定价的对偶Monte Carlo模拟[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 90-97.
[3] 张浩奇, 张浩敏. 随机微分方程1.5阶随机Taylor方法的指数稳定性[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 35-41.
[4] 胡华. 与鞅相关的广义Ornstein-Uhlenbeck过程及其在金融中的应用[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 84-92.
[5] 李海燕, 韦煜明, 彭华勤. 具有双疾病的随机SIRS传染病模型的灭绝性与持久性分析[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 144-155.
[6] 李淑一, 韦煜明, 彭华勤. 含Ornstein-Uhlenbeck过程的随机SIS传染病模型[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 74-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发