广西师范大学学报(自然科学版) ›› 2019, Vol. 37 ›› Issue (4): 94-102.doi: 10.16088/j.issn.1001-6600.2019.04.012

• • 上一篇    下一篇

基于事件驱动的通信卫星传输功率的最优控制

熊晨旭, 韦妙云, 唐胜达*   

  1. 广西师范大学数学与统计学院,广西桂林541006
  • 收稿日期:2018-09-13 出版日期:2019-10-25 发布日期:2019-11-28
  • 通讯作者: 唐胜达(1976—),男,四川蓬溪人,广西师范大学副教授,博士。E-mail: tangsd@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(61761008, 61561046);广西高校数学与统计模型重点实验室开放课题(2017GXKLM002);广西师范大学博士启动基金(2017BQ002);广西研究生教育创新计划项目(YCSW2018098)

Optimal Event-driven Transmission Power Rate for Communication Satellite

XIONG Chenxu, WEI Miaoyun, TANG Shengda*   

  1. College of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2018-09-13 Online:2019-10-25 Published:2019-11-28

摘要: 本文提出服务请求、能量获取随机情形下,通信卫星在衰落信道中的通信随机模型,研究基于吞吐量最大的事件驱动的传输功率控制问题。本文将通信系统随机模型转换为混合状态且具有有限动作集合的Markov决策过程,给出最优传输功率的存在性证明及算法实现;以事件驱动传输功率数值实例说明理论结果;分析了参数对系统性能的影响特点。本文结论对通信卫星的通信设计与管理、资源配置优化及持续发展具有积极意义。

关键词: 卫星通信, 最优控制, 传输功率, Markov决策过程

Abstract: In this paper, the stochastic model of the communication system of a communications satellite in the fading channel is given under the random service request and random energy harvesting. The problem of maximum throughput based on event-driven TPR control is presented. The stochastic communication model system is transformed into a hybrid-state Markov decision processes with finite action sets, the existence of the optimal stationary policy is illustrated and the optimal TPR algorithm is proposed. Finally, a numerical example of event-driven TPR is presented to illustrate the theoretical result, and the influences of system parameters on performance are also investigated. This study has a positive significance to the communication design and management, resource allocation optimization and sustainable development of communication satellites.

Key words: satellite communications, optimal control, transmission power rate, Markov decision process

中图分类号: 

  • O211.62
[1] 振国,杨鸿文,郭文彬. 卫星通信系统与技术[M].北京:北京邮电大学出版社, 2003.
[2] 甘仲民,张更新. 卫星通信技术的新发展[J].通信学报, 2006, 27(8):2-9.
[3] CHAN W H R, ZHANG P, NEVAT I, et al. Adaptive duty cycling in sensor networks with energy harvesting using continuous-time Markov chain and fluid models[J].IEEE Journal on Selected Areas in Communications, 2015, 33(12):2687-2700.
[4] HADZI-VELKOV Z, NIKOLOSKA I, KARAGIANNIDIS G K, et al. Wireless networks with energy harvesting and power transfer: Joint power and time allocation[J].IEEE Signal Processing Letters, 2016, 23(1):50-54.
[5] GATZIANAS M,GEORGIADIS L, TASSIULAS L. Control of wireless networks with rechargeable batteries[J].IEEE Transactions on Wireless Communications, 2010, 9(2):581-593.
[6 ] HUANG C, ZHANG R, CUI S. Optimal power allocation for outage probability minimization in fading channels with energy harvesting constraints[J].IEEE Transactions on Wireless Communications, 2014, 13(2):1074-1087.
[7] 朱敬华, 高宏. 无线传感器网络中能源高效的任务分配算法[J].软件学报, 2007(5):1198-1207.
[8] LI H, JAGGI N, SIKDAR B. Relay scheduling for cooperative communications in sensor networks with energy harvesting[J].IEEE Transactions on Wireless Communications, 2011, 10(9):2918-2928.
[9] 邱晶, 余平, 杨士中. 移动卫星通信的信道模型和传输特性分析[J].重庆大学学报(自然科学版), 2003, 26(7):37-41.
[10]ZHANG Q, KASSAM S A. Finite-state Markov model for Rayleigh fading channels[J].IEEE Transactions on Communications, 1999, 47(11): 1688-1692.
[11]WANG H S, MOAYERI N. Finite-state Markov channel-a useful model for radio communication channels[J].IEEE Transactions on Vehicular Technology, 1995, 44(1): 163-171.
[12]SEYEDI A, SIKDAR B. Modeling and analysis of energy harvesting nodes in wireless sensor networks[C]//IEEE 46th Annual Allerton Conference on Communication, Control, and Computing. Piscataway, NJ: IEEE Press, 2008: 67-71.
[13]VENTURA J, CHOWDHURY K. Markov modeling of energy harvesting body sensor networks[C]//2011 IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). Piscataway, NJ: IEEE Press, 2011: 2168-2172.
[14]TAN L, TANG S. Energy harvesting wireless sensor node with temporal death: Novel models and analyses[J]. IEEE/ACM Transactions on Networking, 2017, 25(2): 896-909.
[15]OZEL O, TUTUNCUOGLU K, YANG J, et al. Transmission with energy harvesting nodes in fading wireless channels: Optimal policies[J].IEEE Journal on Selected Areas in Communications, 2011, 29(8): 1732-1743.
[16]ASMUSSEN S. Matrix-analytic models and their analysis[J].Scandinavian Journal of Statistics, 2000, 27(2): 193-226.
[17]PUTERMAN M L. Markov decision processes: discrete stochastic dynamic programming[M].Hoboken, NJ : John Wiley & Sons, 2014.
[18]RITT R K, SENNOTT L I. Optimal stationary policies in general state space Markov decision chains with finite action sets[J].Mathematics of Operations Research, 1992, 17(4): 901-909.
[19]HERNÁNDEZ-LERMA O. Adaptive Markov control processes[M].New York: Springer Science & Business Media, 2012.
[20]CHADÈS I, CHAPRON G, CROS M J, et al. MDPtoolbox: a multi-platform toolbox to solve stochastic dynamic programming problems[J].Ecography, 2014, 37(9): 916-920.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张茹, 张蓓, 任鸿瑞. 山西轩岗矿区耕地流失时空特征及其影响因子研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 121 -132 .
[2] 王梦飞, 黄松. 广西西江经济带的城市旅游经济空间关联研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 144 -150 .
[3] 刘国伦, 宋树祥, 岑明灿, 李桂琴, 谢丽娜. 带宽可调带阻滤波器的设计[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 1 -8 .
[4] 滕志军, 吕金玲, 郭力文, 许媛媛. 基于改进粒子群算法的无线传感器网络覆盖策略[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 9 -16 .
[5] 苗新艳, 张龙, 罗颜涛, 潘丽君. 一类交替变化的竞争—合作混杂种群模型研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 25 -31 .
[6] 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食—被捕食系统[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 32 -40 .
[7] 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41 -49 .
[8] 温玉卓, 唐胜达, 邓国和. 随机环境下具有阈值分红策略的风险过程的破产时间分析[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 56 -62 .
[9] 冯修, 马楠楠, 职红涛, 韩双乔, 张翔. 重金属捕集剂UDTC对低浓度镉废水的处理研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 63 -67 .
[10] 黎国庆, 许承婷, 王立欣, 黄俊, 焦兵, 覃江克. 油茶枯中两个多酚化合物的提取分离及其抗炎活性研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 68 -75 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发