广西师范大学学报(自然科学版) ›› 2019, Vol. 37 ›› Issue (4): 86-93.doi: 10.16088/j.issn.1001-6600.2019.04.011

• • 上一篇    下一篇

有限维空间中广义混合变分不等式的近似-似投影算法

王佳玉   

  1. 四川师范大学数学科学学院,四川成都610068
  • 收稿日期:2018-09-11 出版日期:2019-10-25 发布日期:2019-11-28
  • 通讯作者: 王佳玉(1993—), 男, 四川绵阳人,四川师范大学教师。 E-mail:1058380869@qq.com
  • 基金资助:
    国家自然科学基金(11271274);四川自然科学基金(2018JY0201)

Proximate Projected-Like Method for Solving Generalized Mixed Variational Inequalities in Finite Dimension Spaces

WANG Jiayu   

  1. School of Mathematical Sciences, Sichuan Normal University, Chengdu Sichuan 610068
  • Received:2018-09-11 Online:2019-10-25 Published:2019-11-28

摘要: 本文利用似距离泛函和似投影算子, 在有限维空间中建立了一类广义混合变分不等式的近似-似投影算法,证明了迭代序列是良定的, 在集值映像T为伪单调且上半连续、f是下半连续真凸的条件下证明了迭代序列收敛于广义混合变分不等式的解。

关键词: 广义混合变分不等式, 似投影算法, 似距离泛函, 伪单调映像

Abstract: In this paper,with the adoption of the proximate functional and proximate projection method proposed by Auslender and the establishment of the proximal projection-like method for solving generalized mixed variational inequalities in finite dimension spaces, two results are obtained. Firstly, the iterative sequence is well-defined. Then, every accumulation point of the sequence is a solution of generalized mixed variational inequalities under the condition that the set-valued mapping is pseudo-monotone mapping with upper semi-continuity and f is the lower semi-continuity true convex.

Key words: generalized mixed variational inequalities, projected-like method, proximate functional, pseudomonotone

中图分类号: 

  • O22
[1] SOLODOV M V,SVAITER B F. A new projection method for variational inequality problems[J].SIAM Journal on Control and Optimization, 1999,37(3):765-776.
[2] AUSLENDER A,TEBOULLE M. Projected subgradient menthods whth non-eucliden distances for non-differentiable convex minimization and variational inequalities[J].Mathematical Programming, 2009,120(1):27-48.DOI:10.1007/s10107-007-0147-z.
[3] SALMON G,STRODIOT J J. A bundle method for solving variational inequalities[J].SIAM Journal on Control and Optimization, 2004,14(3):869-893. DOI:10.1137/s1052623401384096.
[4] DING X P,YAO J C,ZENG L C. Existence and algorithm of solutions for generalized strongly nonlinear mixed variational-like inequalities in Banach spaces[J].Computers and Mathematics with Applications, 2008,55(4):669-679.DOI:10.1016/j.camwa.2007.06.004.
[5] DING X P,WANG Z B. The auxiliary principle and an algorithem for a system of generalized set-valued mixed variational inequality in Banach spaces[J].Journal of Computational and Applied Mathematics,2010,233(11):2876-2883. DOI:10.1016/j.cam.2009.11.033.
[6] YAO J C. Existence of generalized variational inequalities[J].Operations Research Letters, 1994,15(1):35-40.
[7] ROCKFELLAR R T. Monotone operators and the proximal point algorith[J].SIAM Journal on Control and Optimization,1976,14:877-898.
[8] HUE TT,STRODIOT J J,NGUYEN V H. Convergence of the approximate peturbed auxiliary problem methods to solve Generalized variational inequalities[J].Journal of Optimization Theory & Applications,2004,121:119-145. DOI:10.1023/b:jota.0000026134.57920.e1.
[9] AUSLENDER A,TEBOULLE M. Interior projection-like methods for monotone variational inequalities[J]. Mathematical Programming,2005,104:39-68.DOI:10.1007/s10107-004-0568-x.
[10]DING X P,TAN K K. A minimax inequality with application to existhce of equilibrium point and fixed point theorems[J].Colloquium Mathematicum, 1992,63(2):233-247.DOI:10.4064/cm-63-2-233-247.
[11]AUBIN J P,EKELAND I. Applied nonlinear analysis[M].New York: Wiley,1984. DOI:10.1016/c2013-0-11033-1.
[12]POLYAK B T. Introduction to optimization[M]. New York:Optimization Software Inc, 1987.
[1] 徐紫文. 非单调变分不等式问题的双投影算法研究[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 52-58.
[2] 唐国吉,赵婷,何登旭. 扰动广义混合变分不等式的可解性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 76-83.
[3] 张亚玲, 穆学文. 二阶锥规划的一种Barzilai-Borwein 梯度算法[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 65-71.
[4] 彭再云, 孔祥茜. 强G-半预不变凸性与非线性规划问题[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李钰慧, 陈泽柠, 黄中豪, 周岐海. 广西弄岗熊猴的雨季活动时间分配[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 80 -86 .
[2] 覃盈盈, 漆光超, 梁士楚. 凤眼莲组织浸提液对靖西海菜花种子萌发的影响[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 87 -92 .
[3] 庄枫红, 马姜明, 张雅君, 苏静, 于方明. 中华水韭对不同光照条件的生理生态响应[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 93 -100 .
[4] 韦宏金, 周喜乐, 金冬梅, 严岳鸿. 湖南蕨类植物增补[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 101 -106 .
[5] 包金萍, 郑连斌, 宇克莉, 宋雪, 田金源, 董文静. 大凉山彝族成人皮褶厚度特征[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 107 -112 .
[6] 林永生, 裴建国, 邹胜章, 杜毓超, 卢丽. 清江下游红层岩溶及其水化学特征[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 113 -120 .
[7] 李贤江, 石淑芹, 蔡为民, 曹玉青. 基于CA-Markov模型的天津滨海新区土地利用变化模拟[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 133 -143 .
[8] 王梦飞, 黄松. 广西西江经济带的城市旅游经济空间关联研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 144 -150 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发