|
广西师范大学学报(自然科学版) ›› 2019, Vol. 37 ›› Issue (4): 86-93.doi: 10.16088/j.issn.1001-6600.2019.04.011
王佳玉
WANG Jiayu
摘要: 本文利用似距离泛函和似投影算子, 在有限维空间中建立了一类广义混合变分不等式的近似-似投影算法,证明了迭代序列是良定的, 在集值映像T为伪单调且上半连续、f是下半连续真凸的条件下证明了迭代序列收敛于广义混合变分不等式的解。
中图分类号:
[1] SOLODOV M V,SVAITER B F. A new projection method for variational inequality problems[J].SIAM Journal on Control and Optimization, 1999,37(3):765-776. [2] AUSLENDER A,TEBOULLE M. Projected subgradient menthods whth non-eucliden distances for non-differentiable convex minimization and variational inequalities[J].Mathematical Programming, 2009,120(1):27-48.DOI:10.1007/s10107-007-0147-z. [3] SALMON G,STRODIOT J J. A bundle method for solving variational inequalities[J].SIAM Journal on Control and Optimization, 2004,14(3):869-893. DOI:10.1137/s1052623401384096. [4] DING X P,YAO J C,ZENG L C. Existence and algorithm of solutions for generalized strongly nonlinear mixed variational-like inequalities in Banach spaces[J].Computers and Mathematics with Applications, 2008,55(4):669-679.DOI:10.1016/j.camwa.2007.06.004. [5] DING X P,WANG Z B. The auxiliary principle and an algorithem for a system of generalized set-valued mixed variational inequality in Banach spaces[J].Journal of Computational and Applied Mathematics,2010,233(11):2876-2883. DOI:10.1016/j.cam.2009.11.033. [6] YAO J C. Existence of generalized variational inequalities[J].Operations Research Letters, 1994,15(1):35-40. [7] ROCKFELLAR R T. Monotone operators and the proximal point algorith[J].SIAM Journal on Control and Optimization,1976,14:877-898. [8] HUE TT,STRODIOT J J,NGUYEN V H. Convergence of the approximate peturbed auxiliary problem methods to solve Generalized variational inequalities[J].Journal of Optimization Theory & Applications,2004,121:119-145. DOI:10.1023/b:jota.0000026134.57920.e1. [9] AUSLENDER A,TEBOULLE M. Interior projection-like methods for monotone variational inequalities[J]. Mathematical Programming,2005,104:39-68.DOI:10.1007/s10107-004-0568-x. [10]DING X P,TAN K K. A minimax inequality with application to existhce of equilibrium point and fixed point theorems[J].Colloquium Mathematicum, 1992,63(2):233-247.DOI:10.4064/cm-63-2-233-247. [11]AUBIN J P,EKELAND I. Applied nonlinear analysis[M].New York: Wiley,1984. DOI:10.1016/c2013-0-11033-1. [12]POLYAK B T. Introduction to optimization[M]. New York:Optimization Software Inc, 1987. |
[1] | 徐紫文. 非单调变分不等式问题的双投影算法研究[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 52-58. |
[2] | 唐国吉,赵婷,何登旭. 扰动广义混合变分不等式的可解性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 76-83. |
[3] | 张亚玲, 穆学文. 二阶锥规划的一种Barzilai-Borwein 梯度算法[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 65-71. |
[4] | 彭再云, 孔祥茜. 强G-半预不变凸性与非线性规划问题[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 48-53. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |