|
广西师范大学学报(自然科学版) ›› 2019, Vol. 37 ›› Issue (4): 79-85.doi: 10.16088/j.issn.1001-6600.2019.04.010
朱娅萍1, 屈国荣2, 范江华1*
ZHU Yaping1, QU Guorong2, FAN Jianghua1*
摘要: 本文在自反局部一致凸光滑的Banach空间中定义了一类广义投影算子, 研究广义投影算子的性质, 证明了拟变分不等式问题可转化为一类不动点问题,给出了拟变分不等式不动点指数的定义, 并应用不动点指数得到某些强制条件下拟变分不等式解的存在性结果。
中图分类号:
[1] CHAN D, PANG J S. The generalized quasi-variational inequality problem[J].Mathematics of Operations Research, 1982,7(2):211-222.DOI:abs/10.1287/moor.7.2.211. [2] AUSSEL D, CORREA R, MARECHAL M. Gap functions for quasivariational inequalities and generalized Nash equilibrium problems[J].Journal of Optimization Theory and Applications, 2011,151(3): 474-488.DOI:org/10.1007/s10957-011-9898-z. [3] GUPTA R, MEHRA A. Gap functions and error bounds for quasi variational inequalities[J].Journal of Global Optimization, 2012,53(4):737-748.DOI:org/10.1007/s10898-011-9733-y. [4] AUSSEL D, GUPTA R, MEHRA A. Gap functions and error bounds for inverse quasi-variational inequality problems[J].Journal of Mathematical Analysis and Applications,2013,407(2):270-280.DOI:10.1016/i.jmaa.2013.03.049. [5] HARMS N, HOHEISEL T, KANZOW C. On a smooth dual gap function for a class of quasi-variational inequalities[J].Journal of Optimization Theory and Applications,2014,163(2):413-438.DOI:org/10.1007/s10957-014-0536-4. [6] AUSSEL D, SULTANA A. Quasi-variational inequality problems with non-compact valued constraint maps[J].Journal of Mathematical Analysis and Applications,2017,456(2):1482-1494.DOI:10.1016/j.jmaa.2017.06.034. [7] LI J L. The generalized projection operator on reflexive Banach spaces and its applications[J].Journal of Mathematical Analysis and Applications, 2005,306(1):55-71.DOI:org/10.1016/j.jmaa.2004.11.007. [8] AUBIN J P, EKELAND I. Applied nonlinear analysis. Pure and Applied Mathematics[M].New York:Jokn Wiley & Sons, 1984. [9] 张石生, 张从军. 集值映射的不动点指数及其在变分不等式中的应用[J].数学研究与评论,1994,14(1):101-104. [10]WANG Z B, HUANG N J. Degree theory for a generalized set-valued variational inequality with an application in Banach spaces[J].Journal of Global Optimization,2011,49(2):343-357.DOI:org/10.1007/s10898-010-9547-3. |
[1] | 庞 杨,韦煜明,冯春华. 一类分数阶微分方程两点边值问题正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 68-75. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |