广西师范大学学报(自然科学版) ›› 2019, Vol. 37 ›› Issue (4): 79-85.doi: 10.16088/j.issn.1001-6600.2019.04.010

• • 上一篇    下一篇

不动点指数法研究拟变分不等式解的存在性

朱娅萍1, 屈国荣2, 范江华1*   

  1. 1.广西师范大学数学与统计学院,广西桂林541006;
    2.桂林旅游学院基础教学部,广西桂林541006
  • 收稿日期:2019-01-13 出版日期:2019-10-25 发布日期:2019-11-28
  • 通讯作者: 范江华(1967—),男,湖南邵阳人,广西师范大学教授,博士。E-mail:jhfan@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(71561004)

The Existence of Solutions for Quasi-variational Inequalities by Using the Fixed Point Index Approach

ZHU Yaping1, QU Guorong2, FAN Jianghua1*   

  1. 1.College of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China;
    2.Department of Basic Education, Guilin Tourism University, Guilin Guangxi 541006, China
  • Received:2019-01-13 Online:2019-10-25 Published:2019-11-28

摘要: 本文在自反局部一致凸光滑的Banach空间中定义了一类广义投影算子, 研究广义投影算子的性质, 证明了拟变分不等式问题可转化为一类不动点问题,给出了拟变分不等式不动点指数的定义, 并应用不动点指数得到某些强制条件下拟变分不等式解的存在性结果。

关键词: 拟变分不等式, 解的存在性, 广义投影算子, 不动点指数

Abstract: A class of generalized projection operator is defined in this paper, and some properties of the generalized projection operator are obtained in reflexive, locally uniformly convex,smooth Banach spaces. The equivalence between the quasi-variational inequality problem and the fixed point problem is established. A concept of fixed point index of quasi-variational inequality is introduced and the fixed point index approach is applied to obtain the existence results for solutions of quasi-variational inequality problem under some conditions.

Key words: quasi-variational inequality, existence of solution, generalized projection operator, fixed point index

中图分类号: 

  • O177.91
[1] CHAN D, PANG J S. The generalized quasi-variational inequality problem[J].Mathematics of Operations Research, 1982,7(2):211-222.DOI:abs/10.1287/moor.7.2.211.
[2] AUSSEL D, CORREA R, MARECHAL M. Gap functions for quasivariational inequalities and generalized Nash equilibrium problems[J].Journal of Optimization Theory and Applications, 2011,151(3): 474-488.DOI:org/10.1007/s10957-011-9898-z.
[3] GUPTA R, MEHRA A. Gap functions and error bounds for quasi variational inequalities[J].Journal of Global Optimization, 2012,53(4):737-748.DOI:org/10.1007/s10898-011-9733-y.
[4] AUSSEL D, GUPTA R, MEHRA A. Gap functions and error bounds for inverse quasi-variational inequality problems[J].Journal of Mathematical Analysis and Applications,2013,407(2):270-280.DOI:10.1016/i.jmaa.2013.03.049.
[5] HARMS N, HOHEISEL T, KANZOW C. On a smooth dual gap function for a class of quasi-variational inequalities[J].Journal of Optimization Theory and Applications,2014,163(2):413-438.DOI:org/10.1007/s10957-014-0536-4.
[6] AUSSEL D, SULTANA A. Quasi-variational inequality problems with non-compact valued constraint maps[J].Journal of Mathematical Analysis and Applications,2017,456(2):1482-1494.DOI:10.1016/j.jmaa.2017.06.034.
[7] LI J L. The generalized projection operator on reflexive Banach spaces and its applications[J].Journal of Mathematical Analysis and Applications, 2005,306(1):55-71.DOI:org/10.1016/j.jmaa.2004.11.007.
[8] AUBIN J P, EKELAND I. Applied nonlinear analysis. Pure and Applied Mathematics[M].New York:Jokn Wiley & Sons, 1984.
[9] 张石生, 张从军. 集值映射的不动点指数及其在变分不等式中的应用[J].数学研究与评论,1994,14(1):101-104.
[10]WANG Z B, HUANG N J. Degree theory for a generalized set-valued variational inequality with an application in Banach spaces[J].Journal of Global Optimization,2011,49(2):343-357.DOI:org/10.1007/s10898-010-9547-3.
[1] 庞 杨,韦煜明,冯春华. 一类分数阶微分方程两点边值问题正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 68-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 覃盈盈, 漆光超, 梁士楚. 凤眼莲组织浸提液对靖西海菜花种子萌发的影响[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 87 -92 .
[2] 韦宏金, 周喜乐, 金冬梅, 严岳鸿. 湖南蕨类植物增补[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 101 -106 .
[3] 包金萍, 郑连斌, 宇克莉, 宋雪, 田金源, 董文静. 大凉山彝族成人皮褶厚度特征[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 107 -112 .
[4] 林永生, 裴建国, 邹胜章, 杜毓超, 卢丽. 清江下游红层岩溶及其水化学特征[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 113 -120 .
[5] 张茹, 张蓓, 任鸿瑞. 山西轩岗矿区耕地流失时空特征及其影响因子研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 121 -132 .
[6] 李贤江, 石淑芹, 蔡为民, 曹玉青. 基于CA-Markov模型的天津滨海新区土地利用变化模拟[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 133 -143 .
[7] 刘国伦, 宋树祥, 岑明灿, 李桂琴, 谢丽娜. 带宽可调带阻滤波器的设计[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 1 -8 .
[8] 滕志军, 吕金玲, 郭力文, 许媛媛. 基于改进粒子群算法的无线传感器网络覆盖策略[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 9 -16 .
[9] 刘铭, 张双全, 何禹德. 基于改进SOM神经网络的异网电信用户细分研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 17 -24 .
[10] 黄荣里, 李长友, 汪敏庆. 一类常微分方程的伯恩斯坦定理Ⅱ[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 50 -55 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发