广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (2): 144-155.doi: 10.16088/j.issn.1001-6600.2020.02.017

• CCIR2019 • 上一篇    下一篇

具有双疾病的随机SIRS传染病模型的灭绝性与持久性分析

李海燕, 韦煜明*, 彭华勤   

  1. 广西师范大学数学与统计学院,广西桂林541006
  • 收稿日期:2018-12-27 发布日期:2020-04-02
  • 通讯作者: 韦煜明(1974—), 男, 广西桂平人, 广西师范大学教授, 博士。 E-mail: ymwei@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11771104); 广西自然科学基金(2018GXNSFAA294084,2018GXNSFBA281140); 广西研究生教育创新计划项目(XYCSZ2019083,JGY2019030)

Persistence and Extinction of a Stochastic SIRS EpidemicModel with Double Epidemic Hypothesis

LI Haiyan, WEI Yuming*, PENG Huaqin   

  1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2018-12-27 Published:2020-04-02

摘要: 本文研究了一类具有饱和发生率的双疾病随机SIRS传染病模型, 通过构造合适的Lyapunov函数, 运用Itô公式, 证明了全局正解的存在唯一性;得到了在某些条件下决定疾病灭绝和持久的随机基本再生数; 探讨了环境变化对疾病的影响。结果表明, 白噪声强度在一定条件下会抑制疾病的爆发。通过数值模拟验证结论的正确性。

关键词: 随机基本再生数, 双疾病, 灭绝性, 持久性

Abstract: In this paper, a stochastic SIRS epidemic model with saturated incidence rate and double epidemic hypothesis is investigated. By constructing suitable Lyapunov function and applying Itô formula, the global existence and uniqueness of positive solution are proved, and the random basic reproductive number which determines disease extinction and persistence under certain conditions is obtained. The influence of disease is also discussed when the environment changes. The results show that the intensity of white noise suppresses the outbreak of the disease under certain conditions.The conclusions are simulated through the numerical method.

Key words: stochasticbasicreproductionnumber, doubleepidemichypothesis, extinction, persistence

中图分类号: 

  • O211.63
[1] KERMACK W O, MCKENDRICK A G. Contribution to the mathematical theory of epidemics, Part I[J].Proceeding of Royal Society of London,1927, A(115): 700-721.
[2] BERNOULLI D, BLOWER D S. An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it[J].Reviews in Medical Virology,2004,14(5): 275-288.
[3] MEYERS L. Contact network epidemiology: Bond percolation applied to infectious disease prediction and control[J].Bulletin of the American Mathematical Society,2007,44: 63-86.
[4] HAN Q, JIANG D, LIN S, et al. The threshold of stochastic SIS epidemic model with saturated incidence rate[J].Advances in Difference Equations,2015,2015(1): 1-10.
[5] CAI Y, KANG Y, BANERJEE M, et al. A stochastic SIRS epidemic model with infectious force under intervention strategies[J].Journal of Differential Equations,2015,259(12): 7463-7502.
[6] 张道祥,胡伟,陶龙,等. 一类具有不同发生率的双疾病随机SIS传染病模型的动力学研究[J].山东大学学报(理学版),2017,52(5): 10-17.
[7] MENG X, ZHAO S, FENG T, et al. Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis[J].Journal of Mathematical Analysis and Applications,2015,433(1): 227-242.
[8] MIAO A, WANG X, ZHANG T, et al. Dynamical analysis of a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis[J].Advances in Difference Equations,2017,2017(1): 226.
[9] ZHAO Y, JIANG D. The threshold of a stochastic SIRS epidemic model with saturated incidence[J].Applied Mathematics Letters,2014,34: 90-93.
[10]MUROYA Y, KUNIYA T. Further stability analysis for a multi-group SIRS epidemic model with varying total population size[J].Applied Mathematics Letters,2014,38: 73-78.
[11]CHANG Z, MENG X, LU X. Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates[J].Physica A Statistical Mechanics and Its Applications,2017,472: 103-116.
[12]XIAO D, RUAN S. Global analysis of an epidemic model with nonmonotone incidence rate[J].Mathematical Biosciences,2007,208(2): 419-429.
[13]CAI Y, JIAO J, GUI Z, et al. Environmental variability in a stochastic epidemic model[J].Applied Mathematics and Computation,2018,329: 210-226.
[14]MAO X. Stochastic differential equations and their applications[M].Chichester: Horwood Publishing Limited, 1997.
[15]DALAL N, GREENHALGH D, MAO X. A stochastic model of AIDS and condom use[J].Journal of Mathematical Analysis and Applications,2007,325(1): 36-53.
[16]KLOEDEN P E, PLATEN E. Higher-order implicit strong numerical schemes for stochastic differential equations[J].Journal of Statistical Physics,1992,66(1/2): 283-314.
[17]HIGHAM D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. Society for Industrial and Applied Mathematics Review,2001,43(3): 525-546.
[1] 李淑一, 韦煜明, 彭华勤. 含Ornstein-Uhlenbeck过程的随机SIS传染病模型[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 74-81.
[2] 黄开娇, 肖飞雁. 一类带Lévy噪声的随机捕食-被捕食系统[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 66-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邢伟, 高晋芳, 颜七笙, 周其华. 具有非线性传染率及脉冲免疫接种的SIQR传染病模型[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 58 -65 .
[2] 曹阳, 唐素勤, 方芳, 赵宏远, 曹存根. 基于PPOG语义文法的产品舆情分析方法[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 74 -80 .
[3] 许伦辉, 刘景柠, 朱群强, 王晴, 谢岩, 索圣超. 自动引导车路径偏差的控制研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 1 -6 .
[4] 邝先验, 吴赟, 曹韦华, 吴银凤. 城市混合非机动车流的元胞自动机仿真模型[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 7 -14 .
[5] 肖瑞杰, 刘野, 修晓明, 孔令江. 耦合腔光机械系统中两个机械振子的态交换[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 15 -19 .
[6] 黄慧琼, 覃运梅. 考虑驾驶员性格特性的超车模型研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 20 -26 .
[7] 袁乐平, 孙瑞山. 飞行冲突调配概率安全评估方法研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 27 -31 .
[8] 杨盼盼, 祝龙记, 操孟杰. 基于STM32的TSC型无功补偿控制系统的研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 32 -37 .
[9] 章美月. 关于电子束聚焦系统模型的一些新结果[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 38 -44 .
[10] 侯晓东, 蔡斌斌, 金炜东, 段旺旺. 基于证据距离和模糊熵的加权证据融合新方法[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 45 -51 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发