|
广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (2): 144-155.doi: 10.16088/j.issn.1001-6600.2020.02.017
李海燕, 韦煜明*, 彭华勤
LI Haiyan, WEI Yuming*, PENG Huaqin
摘要: 本文研究了一类具有饱和发生率的双疾病随机SIRS传染病模型, 通过构造合适的Lyapunov函数, 运用Itô公式, 证明了全局正解的存在唯一性;得到了在某些条件下决定疾病灭绝和持久的随机基本再生数; 探讨了环境变化对疾病的影响。结果表明, 白噪声强度在一定条件下会抑制疾病的爆发。通过数值模拟验证结论的正确性。
中图分类号:
[1] KERMACK W O, MCKENDRICK A G. Contribution to the mathematical theory of epidemics, Part I[J].Proceeding of Royal Society of London,1927, A(115): 700-721. [2] BERNOULLI D, BLOWER D S. An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it[J].Reviews in Medical Virology,2004,14(5): 275-288. [3] MEYERS L. Contact network epidemiology: Bond percolation applied to infectious disease prediction and control[J].Bulletin of the American Mathematical Society,2007,44: 63-86. [4] HAN Q, JIANG D, LIN S, et al. The threshold of stochastic SIS epidemic model with saturated incidence rate[J].Advances in Difference Equations,2015,2015(1): 1-10. [5] CAI Y, KANG Y, BANERJEE M, et al. A stochastic SIRS epidemic model with infectious force under intervention strategies[J].Journal of Differential Equations,2015,259(12): 7463-7502. [6] 张道祥,胡伟,陶龙,等. 一类具有不同发生率的双疾病随机SIS传染病模型的动力学研究[J].山东大学学报(理学版),2017,52(5): 10-17. [7] MENG X, ZHAO S, FENG T, et al. Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis[J].Journal of Mathematical Analysis and Applications,2015,433(1): 227-242. [8] MIAO A, WANG X, ZHANG T, et al. Dynamical analysis of a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis[J].Advances in Difference Equations,2017,2017(1): 226. [9] ZHAO Y, JIANG D. The threshold of a stochastic SIRS epidemic model with saturated incidence[J].Applied Mathematics Letters,2014,34: 90-93. [10]MUROYA Y, KUNIYA T. Further stability analysis for a multi-group SIRS epidemic model with varying total population size[J].Applied Mathematics Letters,2014,38: 73-78. [11]CHANG Z, MENG X, LU X. Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates[J].Physica A Statistical Mechanics and Its Applications,2017,472: 103-116. [12]XIAO D, RUAN S. Global analysis of an epidemic model with nonmonotone incidence rate[J].Mathematical Biosciences,2007,208(2): 419-429. [13]CAI Y, JIAO J, GUI Z, et al. Environmental variability in a stochastic epidemic model[J].Applied Mathematics and Computation,2018,329: 210-226. [14]MAO X. Stochastic differential equations and their applications[M].Chichester: Horwood Publishing Limited, 1997. [15]DALAL N, GREENHALGH D, MAO X. A stochastic model of AIDS and condom use[J].Journal of Mathematical Analysis and Applications,2007,325(1): 36-53. [16]KLOEDEN P E, PLATEN E. Higher-order implicit strong numerical schemes for stochastic differential equations[J].Journal of Statistical Physics,1992,66(1/2): 283-314. [17]HIGHAM D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. Society for Industrial and Applied Mathematics Review,2001,43(3): 525-546. |
[1] | 李淑一, 韦煜明, 彭华勤. 含Ornstein-Uhlenbeck过程的随机SIS传染病模型[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 74-81. |
[2] | 黄开娇, 肖飞雁. 一类带Lévy噪声的随机捕食-被捕食系统[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 66-72. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |