|
广西师范大学学报(自然科学版) ›› 2016, Vol. 34 ›› Issue (1): 84-92.doi: 10.16088/j.issn.1001-6600.2016.01.013
胡华
HU Hua
摘要: 本文研究一个由谱负广义Ornstein-Uhlenbeck过程的恒定水平首达时的二维联合分布及其在这个首达时的原始停止。基于有关Levy过程和GOU过程的一些结果,通过使用鞅和马尔可夫链方法,给出了依据新特殊函数分布的拉普拉斯变换的显式表达式。详细研究了稳定情况下的广义Ornstein-Uhlenbeck过程,给出了计算广义Vasicek 模型中的欧式最大值看涨期权价格的拉普拉斯变换公式,推广了已有结果。
中图分类号:
[1] BEHME A,LINDNER A.Multivariate generalized Ornstein-Uhlenbeck processes[J].Stochastic Processes and Their Applications,2012,122(4):1487-1518. DOI:10.1016/j.spa.2012.01.002. [2] BO Lijun,YANG Xuewei.Sequential maximum likelihood estimation for reflected generalized Ornstein-Uhlenbeck processes[J]. Statistics and Probability Letters,2012,82(7):1374-1382. DOI:10.1016/j.spl.2012.03.018. [3] HADJIEV D I.The first passage problem for generalized Ornstein-Uhlenbeck processes with nonpositive jumps[M]// AZÉMA J,YOR M.Seminaire de Probabilites XIX 1983/84:Lecture Notes in Mathematics Volume 1123.Berlin: Springer,1985:80-90.DOI:10.1007/BFb0075840. [4] BORODIN A N,SALMINEN P.Handbook of brownian motion:facts and formulae[M].2nd ed.Basel:Birkhauser Verlag,2002. [5] CARMONA P,PETIT F,YOR M.Exponential functionals of Levy processes[M]//BARNDORFF-NIELSEN O E,RESNICK S I,MIKOSCH T.Levy Processes:Theory and Applications.Boston,MA:Birkhauser Boston,2001:41-55. DOI:10.1007/978-1-4612-0197-7_2. [6] BERTOIN J.On the Hilbert transform of the local times of a Levy process[J].Bull Sci Math,1995,119(2):147-156. [7] LACHAL A.Quelques martingales associées à l’intégrale du processus d’ornstein-uhlenbeck,application à l’étude despremiers instants d’atteinte[J].Stochastics and Stochastic Reports,1996,58(3/4):285-302.DOI: 10.1080/ 17442509608834078. [8] BARNDORFF-NIELSEN O E,SHEPHARD N.Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics[J].J Roy Statist Soc:Ser B(Statist Methodol),2001,63(2):167-241. DOI:10.1111/1467-9868.00282. [9] FASEN V.Statistical estimation of multivariate Ornstein-Uhlenbeck processes and applications to co-integration[J].Journal of Econometrics,2013,172(2):325-337. DOI:10.1016/j.jeconom.2012.08.019. [10] 孙丽娟.随机利率下基于O-U过程的欧式期权定价[J].荆楚理工学院学报,2011,26(2):47-51. [11] 刘敬伟.Vasicěk随机利率模型下指数O-U过程的幂型期权鞅定价[J].数学的实践与认识,2009,39(1):31-39. [12] DUFFIE D,FILIPOVIC D,SCHACHERMAYER W.Affine processes and applications in finance[J].Ann Appl Probab,2003,13(3):984-1053. [13] SATO K.Levy processes and infinetely divisible distributions[M].Cambridge:Cambridge University Press,1999. [14] NOVIKOV A.Martingales and first-passage times for Ornstein-Uhlenbeck processes with a jump component[J]. Theory of Probability and Its Applications,2004,48(2):288-303.DOI:10.1137/S0040585X97980403. [15] SKOROHOD A V.Random Processes with Independent Increments[M].Dordrecht:Kluwer Academic Publishers,1991. [16] NOVIKOV A A.A martingale approach in problems on first crossing time of nonlinear boundaries[J].Proceedings of the Steklov Institute of Mathematics,1983,4:141-163. [17] 李志广,康淑瑰.混合分数布朗运动环境下短期利率服从vasicek模型的欧式期权定价[J/OL].数学杂志,2014[2015-09-10].http://www.cnki.net/kcms/doi/10.13548/j.sxzz.20130311004.html. [18] 王晶,张兴永.利率服从Vasicek模型下的欧式期权定价[J].安庆师范学院学报(自然科学版),2011,17(3):35-37,45. [19] LEBLANC B,SCAILLET O.Path dependent options on yields in the affine term structure[J].Finance and Stochastics,1998,2(4):349-367.DOI:10.1007/s007800050045. |
[1] | 汪嘉骎, 邓国和. 基于仿射跳扩散模型的利率衍生品定价[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 74-85. |
[2] | 唐胜达, 秦永松. 带干扰的MAP风险过程的期望贴现惩罚函数[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 23-27. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |