广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 188-203.doi: 10.16088/j.issn.1001-6600.2024121101

• 生态环境科学研究 • 上一篇    下一篇

氮源差异对菌渣堆肥效果及其微生物群落的影响

黄秋英1,2,3, 刘庆洋4, 马铷淇1,2,3, 黄丽红1,2,3, 许佳妤1,2,3, 文星月1,2,3, 巫柳仪1,2,3, 梁倩倩1,2,3, 覃云斌1,2,3*, 艾郴兵1,2,3*   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    2.广西漓江流域景观资源保育与可持续利用重点实验室(广西师范大学),广西 桂林 541006;
    3.广西师范大学 生命科学学院,广西 桂林 541006;
    4.中国科学院 昆明植物研究所,云南 昆明 650201
  • 收稿日期:2024-12-11 修回日期:2025-04-18 发布日期:2025-11-19
  • 通讯作者: 覃云斌(1990—),男,广西桂林人,广西师范大学讲师,博士。E-mail: shuibaoqinyunbin@163.com
    艾郴兵(1983—),男,湖南郴州人,广西师范大学副教授,博士。E-mail: chenbingai@mailbox.gxnu.edu.cn
  • 基金资助:
    广西重点研发计划项目(桂科AB22080072);广西科技基地和人才专项(桂科AD21220163);广西大学生创新创业训练计划(创新训练项目)(S202410602161)

Effect of Nitrogen Source Difference on Composting Effect of Spent Mushroom Dreg and Microbial Community

HUANG Qiuying1,2,3, LIU Qingyang4, MA Ruqi1,2,3, HUANG Lihong1,2,3, XU Jiayu1,2,3, WEN Xingyue1,2,3, WU Liuyi1,2,3, LIANG Qianqian1,2,3, QIN Yunbin1,2,3*, AI Chenbing1,2,3*   

  1. 1. Key Laboratory of Ecology of Rare and Endangeredspecies and Environmental Protection (Guangxi Normal University) Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    4. Kunming Institute of Botany, Chinese Academy of Sciences, Kunming Yunnan 650201, China
  • Received:2024-12-11 Revised:2025-04-18 Published:2025-11-19

摘要: 中国是食用菌生产第一大国,每年产生上亿吨废弃菌渣,然而多数废弃菌渣直接丢弃或焚烧,不但污染环境且浪费其富含的大量营养物质,因此亟需资源化利用。本研究以废弃菌渣为主料,分别与鸡粪、牛粪2种氮源进行条垛式机械翻堆共堆肥,以探究菌渣与不同氮源共堆肥(初始C/N值为25)的腐熟效果及其微生物群落结构变化特征。结果表明,经过85 d发酵,鸡粪菌渣与牛粪菌渣处理的有机质含量大于等于30%,总养分含量均大于等于4%,pH在5.5~8.5且发芽指数大于等于70%,均达到《NY/T 525—2021 有机肥料》和《NY/T 3442—2019 畜禽粪便堆肥技术规范》要求。鸡粪菌渣处理的总氮、总磷、总钾和速效钾含量的增长率、发芽指数显著高于牛粪菌渣处理(P<0.05),C/N和有机质的下降速率快于牛粪菌渣处理(P<0.05)。对2种堆肥处理的pH、电导率(EC)、发芽指数(GI)、有机质(OM)等11项指标进行主成分综合评价,鸡粪菌渣处理的主成分综合得分高于牛粪菌渣处理。堆肥前后鸡粪菌渣处理的优势细菌由初始期的变形菌门(45.01%)转为放线菌门(31.84%)和变形菌门(23.71%),优势真菌由子囊菌门(60.69%)和担子菌门(38.29%)转为子囊菌门(91.22%);而牛粪菌渣处理的优势细菌由初始期的绿弯菌门(72.21%)变为变形菌门(27.38%)和绿弯菌门(23.99%),优势真菌由子囊菌门(82.84%)和unclassified_k_Fungi门(13.28%)变为子囊菌门(94.31%)。堆肥前后的细菌多样性指数,鸡粪菌渣处理由初始期的3.98增至5.26,牛粪菌渣处理由初始期的2.79增至5.67(P<0.05)。随机森林分析表明,有机质、含水率、碳氮比、总氮和总磷含量是影响堆肥过程中微生物群落丰富度和多样性的关键因素。综上,氮源差异会导致废弃菌渣堆肥过程中微生物群落和理化指标存在差异,进而影响堆肥效果,其中鸡粪作为氮源的堆肥腐熟效果更好。

关键词: 鸡粪, 牛粪, 菌渣, 腐熟度, 微生物群落

Abstract: China is the largest producer of edible mushrooms, producing hundreds of millions of tons of spent mushroom dreg every year. However, most of the spent mushroom dreg is directly discarded or incinerated, which not only pollutes the environment but also wastes its rich nutrients, so it is urgent to use resources. In this study, spent mushroom dreg was used as the main material, and the two nitrogen sources, chicken manure and cattle manure, were respectively used for cutting mechanical composting, in order to explore the decomposition effect of bacterial residue and different nitrogen source co-compost (initial C/N was 25) and the characteristics of microbial community structure. The results showed that after 85 days of fermentation, organic matter content ≥30%, total nutrient content ≥4%, pH 5.5-8.5 and germination index ≥70% were obtained from chicken manure residue and cattle manure residue treatment, all of which met the requirements of (NY/T 525-2021 Organic Fertilizer) and (NY/T 3442-2019 Technical Specification for Livestock manure composting). The growth rate of total nitrogen, total phosphorus, total potassium and available potassium content and germination index of chicken manure residue compost were significantly higher than those of cattle manure residue (P < 0.05), and the decline rate of C/N and organic matter were faster than that of cattle manure residue (P<0.05). The pH, conductivity (EC), germination index (GI), organic matter (OM) and other 12 indexes of the two compost treatments were evaluated, and the overall score of the principal component of the chicken manure residue treatment was higher than that of the cattle manure residue treatment. During the co-composting processes, the dominant bacterial phylum changed from Proteobacteria (45.01%) to Actinomycetes (31.84%) and Proteobacteria (23.71%), and the dominant fungous phylum changed from Ascomyces (60.69%) and Basidiomycetes (38.29%) to Ascomyces (91.22%). The dominant bacterial of the treatment changed from the initial Chloroflexi (72.21%) to Proteobacteria (27.38%) and Chloroflexi (23.99%), and the dominant fungous changed from Ascomycetes (82.84%) and unclassified_k_Fungi (13.28%) to Ascomycetes (94.31%). After co-composting, the bacterial diversity index of chicken manure mushroom dreg treatment increased from the initial 3.98 to 5.26, and that of cattle manure mushroom dreg treatment increased from the initial 2.79 to 5.67 (P<0.05). Random Forest model showed that organic matter, water content, carbon to nitrogen ratio, total nitrogen and total phosphorus contents were the key factors affecting microbial community richness and diversity during composting. In conclusion, the difference of nitrogen sources will lead to the difference of microbial communities and physical and chemical indexes in the composting process of spent mushroom dreg, which will affect the composting effect. Among them, the compost with chicken manure as nitrogen source has better rotting effect.

Key words: chicken manure, cattle manure dung, spent mushroom dreg, compost maturity, microbial community

中图分类号:  S141.4

[1] 赵玉阳, 周金看, 夏会楠, 等. 食用菌培养料发酵过程中理化性质及微生物群落结构研究[J]. 食药用菌, 2023, 31(4): 262-269.
[2] MENG X Y, LIU B, XI C, et al. Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks[J]. Bioresource Technology, 2018, 251: 22-30. DOI: 10.1016/j.biortech.2017.09.077.
[3] 李武, 周祖法. 我国食用菌产品出口受阻现状、原因及对策[J]. 中国食用菌, 2024, 43(5): 96-100. DOI: 10.13629/j.cnki.53-1054.2024.05.017.
[4] 中国食用菌协会. 2022年度全国食用菌统计调查结果分析[J]. 中国食用菌, 2024, 43(1): 118-126. DOI: 10.13629/j.cnki.53-1054.2024.01.018.
[5] LEONG Y K, MA T W, CHANG J S, et al. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): a review[J]. Bioresource Technology, 2022, 344: 126157. DOI: 10.1016/j.biortech.2021.126157.
[6] BECKERS S J, DALLO I A, DEL CAMPO I, et al. From compost to colloids: valorization of spent mushroom substrate[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6991-6998. DOI: 10.1021/acssuschemeng.8b06710.
[7] 张玉雪, 王德瑞, 曾阳, 等. 不同碳氮比对海带和菌菇渣共堆肥品质及微生物群落影响的研究[J]. 环境卫生工程, 2025, 33(1): 50-56. DOI: 10.19841/j.cnki.hjwsgc.2025.01.007.
[8] DA SILVA ALVES L, DE ALMEIDA MOREIRA B R, DA SILVA VIANA R, et al. Recycling spent mushroom substrate into fuel pellets for low-emission bioenergy producing systems[J]. Journal of Cleaner Production, 2021, 313: 127875. DOI: 10.1016/j.jclepro.2021.127875.
[9] LI H J, HE Y H, YAN Z, et al. Insight into the microbial mechanisms for the improvement of spent mushroom substrate composting efficiency driven by phosphate-solubilizing Bacillus subtilis[J]. Journal of Environmental Management, 2023, 336: 117561. DOI: 10.1016/j.jenvman.2023.117561.
[10] LIU X, MENG J S, ZHU J X, et al. Comprehensive understandings into complete reconstruction of precatalysts: synthesis, applications, and characterizations[J]. Advanced Materials, 2021, 33(32): e2007344. DOI: 10.1002/adma.202007344.
[11] SUN C Y, WEI Y B, KOU J N, et al. Improve spent mushroom substrate decomposition, bacterial community and mature compost quality by adding cellulase during composting[J]. Journal of Cleaner Production, 2021, 299: 126928. DOI: 10.1016/j.jclepro.2021.126928.
[12] WEI P P, LI Y M, LAI D Q, et al. Protaetia brevitarsis larvae can feed on and convert spent mushroom substrate from Auricularia auricula and Lentinula edodes cultivation[J]. Waste Management, 2020, 114: 234-239. DOI: 10.1016/j.wasman.2020.07.009.
[13] BAI L, DENG Y, LI J, et al. Role of the proportion of cattle manure and biogas residue on the degradation of lignocellulose and humification during composting[J]. Bioresource Technology, 2020, 307: 122941. DOI: 10.1016/j.biortech.2020.122941.
[14] KULSHRESHTHA S. Removal of pollutants using spent mushrooms substrates[J]. Environmental Chemistry Letters, 2019, 17(2): 833-847. DOI: 10.1007/s10311-018-00840-2.
[15] 赵鹏博. 碳氮比和通气量对牛粪与烟梗混合堆肥过程的影响[D]. 杨凌: 西北农林科技大学, 2017.
[16] SASSINE Y N, NAIM L, EL SEBAALY Z, et al. Nano urea effects on Pleurotus ostreatus nutritional value depending on the dose and timing of application[J]. Scientific Reports, 2021, 11(1): 5588. DOI: 10.1038/s41598-021-85191-9.
[17] AZIS F A, CHOO M, SUHAIMI H, et al. The effect of initial carbon to nitrogen ratio on kitchen waste composting maturity[J]. Sustainability, 2023, 15(7): 6191. DOI: 10.3390/su15076191.
[18] ROBLEDO-MAHN T, ARANDA E, PESCIAROLI C, et al. Effect of semi-permeable cover system on the bacterial diversity during sewage sludge composting[J]. Journal of Environmental Management, 2018, 215: 57-67. DOI: 10.1016/j.jenvman.2018.03.041.
[19] TAO Z D, LIU X C, SUN L L, et al. Effects of two types nitrogen sources on humification processes and phosphorus dynamics during the aerobic composting of spent mushroom substrate[J]. Journal of Environmental Management, 2022, 317: 115453. DOI: 10.1016/j.jenvman.2022.115453.
[20] 黄小红, 焦静, 杜嵇华, 等. 不同氮源添加对椰子叶堆肥腐殖化效果的影响[J]. 中国农业科技导报, 2024, 26(2): 162-170. DOI: 10.13304/j.nykjdb.2023.0650.
[21] LI X X, WANG S P, SUN Z Y, et al. Performance and microbial community dynamics during rice straw composting using urea or protein hydrolysate as a nitrogen source: a comparative study[J]. Waste Management, 2021, 135: 130-139. DOI: 10.1016/j.wasman.2021.08.026.
[22] ZHANG Z C, WEI Z M, GUO W, et al. Two types nitrogen source supply adjusted interaction patterns of bacterial community to affect humifaction process of rice straw composting[J]. Bioresource Technology, 2021, 332: 125129. DOI: 10.1016/j.biortech.2021.125129.
[23] CHEN H Y, AWASTHI S K, LIU T, et al. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting[J]. Journal of Hazardous Materials, 2020, 389: 121908. DOI: 10.1016/j.jhazmat.2019.121908.
[24] WANG Q, AWASTHI M K, ZHAO J C, et al. Utilization of medical stone to improve the composition and quality of dissolved organic matter in composted pig manure[J]. Journal of Cleaner Production, 2018, 197: 472-478. DOI: 10.1016/j.jclepro.2018.06.230.
[25] 曹丽娜, 暴振康, 王岩, 等. 鸡粪堆肥过程中氮素损失研究综述[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 27-33. DOI: 10.16088/j.issn.1001-6600.2023091101.
[26] 王定美, 麦力文, 杨霞, 等. 粪便对食用菌渣堆肥中碳氮转化的影响[J]. 环境污染与防治, 2020, 42(11): 1368-1374. DOI: 10.15985/j.cnki.1001-3865.2020.11.012.
[27] 刘超, 徐谞, 顾文文, 等. 典型畜禽粪便配伍食用菌菌渣堆肥研究[J]. 中国农学通报, 2018, 34(21): 84-90.
[28] WANG D M, MAO Y L, MAI L W, et al. Insight into humification of mushroom residues under addition of Rich-N sources: Comparing key molecular evolution processes using EEM-PARAFAC and 2D-FTIR-COS analysis[J]. Journal of Environmental Management, 2023, 329: 117079. DOI: 10.1016/j.jenvman.2022.117079.
[29] XI B D, HE X S, DANG Q L, et al. Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting[J]. Bioresource Technology, 2015, 196: 399-405. DOI: 10.1016/j.biortech.2015.07.069.
[30] 徐春钰, 张仕颖, 夏运生, 等. 2种微生物菌剂对蔬菜花卉秸秆高温堆肥过程中氮变化的影响[J]. 中国农学通报, 2016, 32(24): 136-140.
[31] 张书敏, 徐凤花, 代欢, 等. 低温复合菌系对玉米秸秆与牛粪堆肥的影响[J]. 中国土壤与肥料, 2017(2): 136-140. DOI: 10.11838/sfsc.20170222.
[32] 刘佳, 李婉, 许修宏, 等. 接种纤维素降解菌对牛粪堆肥微生物群落的影响[J]. 环境科学, 2011, 32(10): 3073-3081. DOI: 10.13227/j.hjkx.2011.10.017.
[33] CHEN Y, WANG Y Y, XU Z, et al. Enhanced humification of maize straw and canola residue during composting by inoculating Phanerochaete chrysosporium in the cooling period[J]. Bioresource Technology, 2019, 293: 122075. DOI: 10.1016/j.biortech.2019.122075.
[34] TU Z N, REN X N, ZHAO J C, et al. Synergistic effects of biochar/microbial inoculation on the enhancement of pig manure composting[J]. Biochar, 2019, 1(1): 127-137. DOI: 10.1007/s42773-019-00003-8.
[35] 李甲亮, 单长青, 李学平. 污泥-营养土联合堆肥中钾细菌接种模式研究[J]. 中国农学通报, 2015, 31(20): 142-147.
[36] ZHU P C, LI Y C, GAO Y F, et al. Insight into the effect of nitrogen-rich substrates on the community structure and the co-occurrence network of thermophiles during lignocellulose-based composting[J]. Bioresource Technology, 2021, 319: 124111. DOI: 10.1016/j.biortech.2020.124111.
[37] DONG S J, LI R Q, ZHOU K Y, et al. Response of humification process to fungal inoculant in corn straw composting with two different kinds of nitrogen sources[J]. Science of The Total Environment, 2024, 946: 174461. DOI: 10.1016/j.scitotenv.2024.174461.
[38] 朱琳, 曾椿淋, 高凤, 等. 水稻秸秆堆肥发酵粗制肥料中微生物多样性研究[J]. 农业机械学报, 2018, 49(7): 228-234. DOI: 10.6041/j.issn.1000-1298.2018.07.027.
[39] LIU L, WANG S Q, GUO X P, et al. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting[J]. Waste Management, 2018, 73: 101-112. DOI: 10.1016/j.wasman.2017.12.026.
[40] 周亚文, 张宇航, 沈玉君, 等. 初始含水率对人粪污好氧堆肥腐熟及微生物群落结构变化的影响[J]. 环境工程学报, 2022, 16(12): 4108-4120. DOI: 10.12030/j.cjee.202207035.
[41] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
[42] 蔡涵冰, 冯雯雯, 董永华, 等. 畜禽粪便和桃树枝工业化堆肥过程中微生物群演替及其与环境因子的关系[J]. 环境科学, 2020, 41(2): 997-1004. DOI: 10.13227/j.hjkx.201907153.
[43] DAI T J, WEN D H, BATES C T, et al. Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities[J]. Nature Communications, 2022, 13: 175. DOI: 10.1038/s41467-021-27857-6.
[44] ZHU J T, LIN H, WU X, et al. Metataxonomics of Internal Transcribed Spacer amplicons in cerebrospinal fluid for diagnosing and genotyping of cryptococcal meningitis[J]. Chinese Medical Journal, 2019, 132(23): 2827-2834. DOI: 10.1097/CM9. 0000000000000541.
[45] 赵建荣, 高德才, 汪建飞, 等. 不同C/N下鸡粪麦秸高温堆肥腐熟过程研究[J]. 农业环境科学学报, 2011, 30(5): 1014-1020.
[46] KOPEC' M, GONDEK K, BARAN A. Assessment of respiration activity and ecotoxicity of composts containing biopolymers[J]. Ecotoxicology and Environmental Safety, 2013, 89: 137-142. DOI: 10.1016/j.ecoenv.2012.11.021.
[47] 何京钟, 黄钧, 赵晶桃, 等. 微生物菌剂堆肥中草药渣中试研究[J]. 应用与环境生物学报, 2015, 21(5): 860-865. DOI: 10.3724/sp.j.1145.2015.03048.
[48] 江君, 靳红梅, 常志州, 等. C/N对蓝藻好氧堆肥腐熟及无害化进程的影响[J]. 农业环境科学学报, 2012, 31(10): 2031-2038.
[49] 赵万余, 刘吉利, 赵峰. 食用菌渣添加不同比例牛粪对堆肥养分性状的影响[J]. 家畜生态学报, 2022, 43(8): 82-86. DOI: 10.3969/j.issn.1673-1182.2022.08.015.
[50] 康健. 畜禽粪便堆肥过程中物质转化和微生物种群演变规律及酶活性机理研究[D]. 兰州: 兰州理工大学, 2019.
[51] 魏彦红. 腐熟菌剂不同接种量及锯末对牛粪高温堆肥的影响[D]. 兰州: 甘肃农业大学, 2012.
[52] 马晶晶, 陈粮, 向莎, 等. 硫酸亚铁和生物炭对牛粪秸秆好氧堆肥的保氮及还田效果[J]. 江苏农业科学, 2024, 52(17): 232-238. DOI: 10.15889/j.issn.1002-1302.2024.17.031.
[53] 施宠, 张小娥, 沙依甫加玛丽, 等. 牛粪堆肥不同处理全N、P、K及有机质含量的动态变化[J]. 中国牛业科学, 2010, 36(4): 26-29. DOI: 10.3969/j.issn.1001-9111.2010.04.007.
[54] 李文哲, 朱巧银, 范金霞,等. 不同氮源及木醋液对沼渣堆肥的影响[J]. 环境工程学报, 2016, 10(10): 5861-5866. DOI: 10.12030/j.cjee.201505037.
[55] 刘东旭, 陈国双, 鲁新蕊, 等. 不同粪源好氧堆肥过程中养分变化及温室气体排放特征[J]. 北方园艺, 2024(11): 70-78. DOI: 10.11937/bfyy.20240018.
[56] CHENG Y R, WAN W J. Alkaline phosphomonoesterase-harboring bacteria facilitate phosphorus availability during winter composting with different animal manures[J]. Journal of Cleaner Production, 2022, 376: 134299. DOI: 10.1016/j.jclepro.2022.134299.
[57] 张陆, 曹玉博, 王惟帅, 等. 鸡粪添加对蔬菜废弃物堆肥腐殖化过程的影响[J]. 中国生态农业学报(中英文), 2022, 30(2): 258-267. DOI: 10.12357/cjea.20210536.
[58] 龚建英, 田锁霞, 王智中, 等. 微生物菌剂和鸡粪对蔬菜废弃物堆肥化处理的影响[J]. 环境工程学报, 2012, 6(8): 2813-2817.
[59] 何东贤, 莫红芳, 侯小露, 等. 鸡粪堆肥中的细菌群落组成及多样性分析[J]. 西南农业学报, 2023, 36(1): 128-136. DOI: 10.16213/j.cnki.scjas.2023.1.016.
[60] 毛同辉, 罗杰, 杨仕钰,等. 添加不同比例玉米秸秆对鸡粪有机肥品质的影响[J]. 国外畜牧学(猪与禽), 2024, 44(1): 56-61. DOI: 10.3969/j.issn.1001-0769.2024.01.016.
[61] 李洋. 不同菌剂对番茄茎秆堆肥微生物群落及产物的应用效果研究[D]. 杨凌: 西北农林科技大学, 2023.
[62] MA C F, LO P K, XU J Q, et al. Molecular mechanisms underlying lignocellulose degradation and antibiotic resistance genes removal revealed via metagenomics analysis during different agricultural wastes composting[J]. Bioresource Technology, 2020, 314: 123731. DOI: 10.1016/j.biortech.2020.123731.
[63] ZHANG L H, DONG H R, ZHANG J C, et al. Influence of FeONPs amendment on nitrogen conservation and microbial community succession during composting of agricultural waste: Relative contributions of ammonia-oxidizing bacteria and Archaea to nitrogen conservation[J]. Bioresource Technology, 2019, 287: 121463. DOI: 10.1016/j.biortech.2019.121463.
[64] PODOSOKORSKAYA O A, BONCH-OSMOLOVSKAYA E A, NOVIKOV A A, et al. Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 1): 86-92. DOI: 10.1099/ijs.0.041012-0.
[65] XU J Q, JIANG Z W, LI M Q, et al. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting[J]. Journal of Environmental Management, 2019, 243: 240-249. DOI: 10.1016/j.jenvman.2019.05.008.
[66] NEHER D A, WEICHT T R, BATES S T, et al. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times[J]. PLoS One, 2013, 8(11): e79512. DOI: 10.1371/journal.pone.0079512.
[67] LIU G C, ZHENG H, JIANG Z X, et al. Formation and physicochemical characteristics of nano biochar: insight into chemical and colloidal stability[J]. Environmental Science & Technology, 2018, 52(18): 10369-10379. DOI: 10.1021/acs.est.8b01481.
[68] MARTINS L F, ANTUNES L P, PASCON R C, et al. Metagenomic analysis of a tropical composting operation at the so Paulo zoo park reveals diversity of biomass degradation functions and organisms[J]. PLoS One, 2013, 8(4): e61928. DOI: 10.1371/journal.pone.0061928.
[69] KE G R, LAI C M, LIU Y Y, et al. Inoculation of food waste with the thermo-tolerant lipolytic actinomycete Thermoactinomyces vulgaris A31 and maturity evaluation of the compost[J]. Bioresource Technology, 2010, 101(19): 7424-7431. DOI: 10.1016/j.biortech.2010.04.051.
[70] TAHA M, FODA M, SHAHSAVARI E, et al. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges[J]. Current Opinion in Biotechnology, 2016, 38: 190-197. DOI: 10.1016/j.copbio.2016.02.012.
[71] ZHU Y J, WANG Y Y, JIANG X X, et al. Microbial community compositional analysis for membrane bioreactor treating antibiotics containing wastewater[J]. Chemical Engineering Journal, 2017, 325: 300-309. DOI: 10.1016/j.cej.2017.05.073.
[72] MARTIN M, BARBEYRON T, MARTIN R, et al. The cultivable surface microbiota of the brown Alga ascophyllum nodosum is enriched in macroalgal-polysaccharide-degrading bacteria[J]. Frontiers in Microbiology, 2015, 6: 1487. DOI: 10.3389/fmicb.2015.01487.
[73] 肖小兰, 张浩, 付传僡, 等. 嗜热菌筛选及其促进沼渣和虫粪共堆肥的效果[J]. 浙江农业学报, 2023, 35(3): 647-657. DOI: 10.3969/j.issn.1004-1524.2023.03.18.
[74] AWASTHI S K, DUAN Y M, LIU T, et al. Sequential presence of heavy metal resistant fungal communities influenced by biochar amendment in the poultry manure composting process[J]. Journal of Cleaner Production, 2021, 291: 125947. DOI: 10.1016/j.jclepro.2021.125947.
[75] ZHUO R, FAN F F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants[J]. Science of The Total Environment, 2021, 778: 146132. DOI: 10.1016/j.scitotenv.2021.146132.
[76] MENG L X, XU C X, WU F L, et al. Microbial co-occurrence networks driven by low-abundance microbial taxa during composting dominate lignocellulose degradation[J]. Science of The Total Environment, 2022, 845: 157197. DOI: 10.1016/j.scitotenv.2022.157197.
[77] JIANG X, DENG L T, MENG Q X, et al. Fungal community succession under influence of biochar in cow manure composting[J]. Environmental Science and Pollution Research International, 2020, 27(9): 9658-9668. DOI: 10.1007/s11356-019-07529-1.
[78] BEIMFORDE C, FELDBERG K, NYLINDER S, et al. Estimating the Phanerozoic history of the ascomycota lineages: combining fossil and molecular data[J]. Molecular Phylogenetics and Evolution, 2014, 78: 386-398. DOI: 10.1016/j.ympev.2014.04.024.
[79] FREY S D, KNORR M, PARRENT J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 2004, 196(1): 159-171. DOI: 10.1016/j.foreco.2004.03.018.
[80] 陈翠玲. 食用菌栽培废料养分含量分析[J]. 河南农业科学, 2002, 31(4): 28-29. DOI: 10.3969/j.issn.1004-3268.2002.04.016.
[81] 陈广银, 王德汉, 项钱彬. 蘑菇渣与落叶联合堆肥过程中养分变化的研究[J]. 农业环境科学学报, 2006, 25(5): 1347-1353. DOI: 10.3321/j.issn:1672-2043.2006.05.050.
[82] CHANG W N, LU C H, HUANG C R, et al. Community-acquired Acinetobacter meningitis in adults[J]. Infection, 2000, 28(6): 395-397. DOI: 10.1007/s150100070013.
[83] CARVALHEIRA A, CASQUETE R, SILVA J, et al. Prevalence and antimicrobial susceptibility of Acinetobacter spp. isolated from meat[J]. International Journal of Food Microbiology, 2017, 243: 58-63. DOI: 10.1016/j.ijfoodmicro.2016.12.001.
[84] CARVALHEIRA A, FERREIRA V, SILVA J, et al. Enrichment of Acinetobacter spp. from food samples[J]. Food Microbiology, 2016, 55: 123-127. DOI: 10.1016/j.fm.2015.11.002.
[85] WONG M H, CHAN E W C, CHEN S. Isolation of carbapenem-resistant Pseudomonas spp. from food[J]. Journal of Global Antimicrobial Resistance, 2015, 3(2): 109-114. DOI: 10.1016/j.jgar.2015.03.006.
[86] WARD O P, QIN W M, DHANJOON J, et al. Physiology and biotechnology of Aspergillus[M] //Advances in Applied Microbiology Volume 58. Amsterdam: Elsevier, 2005: 1-75. DOI: 10.1016/s0065-2164(05)58001-8.
[87] BEIKI F, BUSQUETS A, GOMILA M, et al. New Pseudomonas spp. are pathogenic to Citrus[J]. PLoS One, 2016, 11(2): e0148796. DOI: 10.1371/journal.pone.0148796.
[88] WICHUK K M, MCCARTNEY D. A review of the effectiveness of current time-temperature regulations on pathogen inactivation during composting[J]. Journal of Environmental Engineering and Science, 2007, 6(5): 573-586. DOI: 10.1139/S07-011.
[89] SINGH R, KIM J, JIANG X. Heat inactivation of Salmonella spp. in fresh poultry compost by simulating early phase of composting process[J]. Journal of Applied Microbiology, 2012, 112(5): 927-935. DOI: 10.1111/j.1365-2672.2012.05268.x.
[90] JIANG Z W, LU Y Y, XU J Q, et al. Exploring the characteristics of dissolved organic matter and succession of bacterial community during composting[J]. Bioresource Technology, 2019, 292: 121942. DOI: 10.1016/j.biortech.2019.121942.
[91] 邓雯文, 陈姝娟, 何雪萍, 等. 鸡粪-堆肥中重金属残留、抗生素耐药基因及细菌群落变化研究[J]. 农业环境科学学报, 2019, 38(2): 439-450.DOI: 10.11654/jaes.2018-0716.
[1] 曹丽娜, 暴振康, 王岩, 李红丽. 鸡粪堆肥过程中氮素损失研究综述[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 27-33.
[2] 杨文静, 邓钰莲, 陈铸鑫, 陶阿凤, 韦力心, 吴金燕, 田翼豪, 宿程远. 环丙沙星对厌氧反应器处理含磷废水效能及微生物群落响应的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 158-168.
[3] 覃容华, 宿程远, 陆欣雅, 陈政鹏, 周一杰, 先云川. Cr(Ⅵ)浓度对MFC-颗粒污泥耦合体系运行效能及微生态的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 242-254.
[4] 唐琳钦, 王安柳, 宿程远, 邓雪, 赵力剑, 先云川, 陈宇. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153.
[5] 谢秋丽, 唐玉娟, 苏厚人, 李光伟, 李良波, 韦继光, 黄荣韶. 不同株龄田七根际土壤微生物和酶活性变化[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 149-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘晓娟, 林璐, 胡郁葱, 潘雷. 站点周边用地类型对地铁乘车满意度影响研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 1 -12 .
[2] 韩华彬, 高丙朋, 蔡鑫, 孙凯. 基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 13 -28 .
[3] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29 -41 .
[4] 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42 -53 .
[5] 凌福, 张永刚, 闻炳海. 基于插值的多相流格子Boltzmann方法曲线边界算法研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 54 -68 .
[6] 解盛, 马海菲, 张灿龙, 王智文, 韦春荣. 基于多分辨率特征定位的跨模态行人检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 69 -79 .
[7] 魏梓书, 陈志刚, 王衍学, 哈斯铁尔·马德提汗. 基于SBSI-YOLO11的轻量化轴承外观缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 80 -91 .
[8] 易见兵, 胡雅怡, 曹锋, 李俊, 彭鑫, 陈鑫. 融合动态通道剪枝的轻量级CT图像肺结节检测网络设计[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 92 -106 .
[9] 卢梦筱, 张阳春, 章晓峰. 基于分布式强化学习方法解决后继特征中的低估问题[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 107 -119 .
[10] 姜云卢, 卢辉杰, 黄晓雯. 惩罚加权复合分位数回归方法在固定效应面板数据中的应用研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 120 -127 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发