2025年04月08日 星期二

广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (1): 85-100.doi: 10.16088/j.issn.1001-6600.2024041201

• “生态保护与资源可持续利用”专辑 • 上一篇    下一篇

不同物理处理对柑橘皮粉和渣粉理化、功能和结构特性的影响

彭莉婷1,2,3,4, 阮瑞梅1,2,3,4, 赵广河1,2,3,4*, 赵丰丽1,2,3,4, 覃云斌1,2,3,4   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    2.广西漓江流域景观资源保育与可持续利用重点实验室(广西师范大学), 广西 桂林 541006;
    3.广西师范大学 生命科学学院, 广西 桂林 541006;
    4.广西师范大学 应用生物学研究所,广西 桂林 541004
  • 收稿日期:2024-04-12 修回日期:2024-05-18 出版日期:2025-01-05 发布日期:2025-02-07
  • 通讯作者: 赵广河(1977—),男,河南南阳人,广西师范大学副教授,博士。E-mail:377325019@qq.com
  • 基金资助:
    桂林市科学研究与技术开发计划项目(20210217-18);广西科技厅重点研发计划项目(2021AB27009)

Physicochemical, Functional and Structural Properties of Citrus Peel and Pomace Powders Affected by Different Physical Treatments

PENG Liting1,2,3,4, RUAN Ruimei1,2,3,4, ZHAO Guanghe1,2,3,4*, ZHAO Fengli1,2,3,4, QIN Yunbin1,2,3,4   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Enviromental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    4. Institute of Applied Biology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2024-04-12 Revised:2024-05-18 Online:2025-01-05 Published:2025-02-07

摘要: 柑橘皮渣是柑橘汁加工业的副产物,富含优质膳食纤维。本文研究超高压、超微粉碎和湿热加压等技术对柑橘皮粉和渣粉理化、功能和结构特征的影响,旨在优选一项较好的物理加工技术。结果表明,与其他2种物理处理相比,湿热加压处理的柑橘皮粉和渣粉具有更好的填充性、水合作用、吸附性能、更高的SDF/TDF含量比和更强的体外抗氧化、降血脂和降血糖活性。与未处理的皮粉和渣粉相比,湿热加压处理可以显著提高皮粉的SDF含量,但显著降低渣粉的SDF含量。除此之外,湿热加压后的柑橘皮粉、渣粉显示出略深的颜色,可能会限制其在浅色食品中的应用。这些研究发现可为作为功能性食品原料的高品质柑橘纤维的开发提供新的视角。

关键词: 柑橘皮, 柑橘果渣, 膳食纤维, 超高压, 超微粉碎, 湿热加压

Abstract: Citrus peel and pomace are by-products of citrus juice processing industry and are known for their abundance of high-quality dietary fiber. However, the traditional method of preparing citrus fiber involves the use of chemicals, which not only contributes to environmental pollution but also results in resource wastage. In light of the principle of comprehensive utilization, this study seeks to develop a physical processing technique for citrus fiber concentrate. The physicochemical, functional, and structural characteristics of citrus peel and pomace powders following modification through ultra-high pressure, superfine grinding, and soaking-autoclaving treatments are investigated, respectively. Compared with ultra-high pressured and superfine ground citrus peel and pomace powders, soaking-autoclaved counterparts exhibit superior physicochemical and functional properties, albeit slightly darker color that might impose limitation on their utilizations in light-colored food products. These findings offer new perspectives on how to prepare high-value citrus fiber concentrateas functional food ingredients.

Key words: citrus peel, citrus pomace, dietary fiber, ultra-high pressure, superfine grinding, soaking-autoclaving

中图分类号:  TS209

[1] YAO B D, FANG H, XU W H, et al. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies[J]. European Journal of Epidemiology, 2014, 29(2): 79-88. DOI: 10.1007/s10654-013-9876-x.
[2] HAN Y, JANG K, KIM U, et al. The possible effect of dietary fiber intake on the metabolic patterns of dyslipidemia subjects: cross-sectional research using nontargeted metabolomics[J]. The Journal of Nutrition, 2023, 153(9): 2552-2560. DOI: 10.1016/J.TJNUT.2023.07.014.
[3] LIU X, YANG W S, PETRICK J L, et al. Higher intake of whole grains and dietary fiber are associated with lower risk of liver cancer and chronic liver disease mortality[J]. Nature Communications, 2021, 12(1): 6388. DOI: 10.1038/S41467-021-26448-9.
[4] KALUZA J, HARRIS H, WALLIN A, et al. Dietary fiber intake and risk of chronic obstructive pulmonary disease: a prospective cohort study of men[J]. Epidemiology, 2018, 29(2): 254-260. DOI: 10.1097/EDE.0000000000000750.
[5] YUSUF K, SAHA S, UMAR S. Health benefits of dietary fiber for the management of inflammatory bowel disease[J]. Biomedicines, 2022, 10(6): 1242. DOI: 10.3390/BIOMEDICINES10061242.
[6] PROKOPIDIS K, GIANNOS P, ISPOGLOU T, et al. Dietary fiber intake is associated with cognitive function in older adults: data from the national health and nutrition examination survey[J]. The American Journal of Medicine, 2022, 135(8): e257-e262. DOI: 10.1016/J.AMJMED.2022.03.022.
[7] FU L M, ZHANG G B, QIAN S S, et al. Associations between dietary fiber intake and cardiovascular risk factors: an umbrella review of meta-analyses of randomized controlled trials[J]. Frontiers in Nutrition, 2022, 9: 972399. DOI: 10.3389/FNUT.2022.972399.
[8] DESAI M S, SEEKATZ A M, KOROPATKIN N M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility[J]. Cell, 2016, 167(5): 1339-1353. DOI: 10.1016/j.cell.2016.10.043.
[9] MONTEIRO S S, DE OLIVEIRA V M, DE BITTENCOURT PASQUALI M A. Probiotics in citrus fruits products: health benefits and future trends for the production of functional foods-a bibliometric review[J]. Foods, 2022, 11(9): 1299. DOI: 10.3390/FOODS11091299.
[10] HE C A, QI J R, LIAO J S, et al. Excellent hydration properties and oil holding capacity of citrus fiber: effects of component variation and microstructure[J]. Food Hydrocolloids, 2023, 144: 108988. DOI: 10.1016/j.foodhyd.2023.108988.
[11] DENG M, ZHANG S, DONG L H, et al. Shatianyu (Citrus grandis L. Osbeck) flavonoids and dietary fiber in combination are more effective than individually in alleviating high-fat-diet-induced hyperlipidemia in mice by altering gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2022, 70(46): 14654-14664. DOI: 10.1021/acs.jafc.2c03797.
[12] FAN R, WANG L, FAN J F, et al. The pulsed electric field assisted-extraction enhanced the yield and the physicochemical properties of soluble dietary fiber from orange peel[J]. Frontiers in Nutrition, 2022, 9: 925642. DOI: 10.3389/FNUT.2022.925642.
[13] ZHOU L N, LUO J Q, XIE Q T, et al. Dietary fiber from navel orange peel prepared by enzymatic and ultrasound-assisted deep eutectic solvents: physicochemical and prebiotic properties[J]. Foods 2023, 12(10): 2007. DOI: 10.3390/FOODS12102007.
[14] SONG L W, QI J R, LIAO J S, et al. Enzymatic and enzyme-physical modification of citrus fiber by xylanase and planetary ball milling treatment[J]. Food Hydrocolloids, 2021, 121: 107015. DOI: 10.1016/J.FOODHYD.2021.107015.
[15] BALNY C. High pressure and protein oligomeric dissociation[J]. High Pressure Research, 2002, 22(3/4): 737-741. DOI: 10.1080/08957950212447.
[16] 陶虹.超声波预处理对糙米品质与萌芽性能的影响[D].上海:上海交通大学,2020. DOI: 10.27307/d.cnki.gsjtu.2018.000983.
[17] OUYANG H, GUO B L, HU Y, et al. Effect of ultra-high pressure treatment on structural and functional properties of dietary fiber from pomelo fruitlets[J]. Food Bioscience, 2023, 52: 102436. DOI: 10.1016/J.FBIO.2023.102436.
[18] YU G Y, BEI J, ZHAO J, et al. Modification of carrot (Daucus carota Linn. var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure[J]. Food Chemistry, 2018, 257: 333-340. DOI: 10.1016/j.foodchem.2018.03.037.
[19] SANG J Q, LI J, WEN J, et al. Chemical composition, structural and functional properties of insoluble dietary fiber obtained from the Shatian pomelo peel sponge layer using different modification methods[J]. LWT, 2022, 165: 113737. DOI: 10.1016/J.LWT.2022.113737.
[20] WANG F, ZENG J, GAO H Y, et al. Effects of different physical technology on compositions and characteristics of bean dregs[J]. Innovative Food Science & Emerging Technologies, 2021, 73: 102789. DOI: 10.1016/J.IFSET.2021.102789.
[21] LIU Y H, WANG L F, LIU F X, et al. Effect of grinding methods on structural, physicochemical, and functional properties of insoluble dietary fiber from orange peel[J]. International Journal of Polymer Science, 2016, 2016: 6269302. DOI: 10.1155/2016/6269302.
[22] CHAU C F, WANG Y T, WEN Y L. Different micronization methods significantly improve the functionality of carrot insoluble fibre[J]. Food Chemistry, 2007, 100(4): 1402-1408. DOI: 10.1016/j.foodchem.2005.11.034.
[23] YE F Y, TAO B B, LIU J, et al. Effect of micronization on the physicochemical properties of insoluble dietary fiber from citrus (Citrus junos Sieb. ex Tanaka) pomace[J]. Food Science and Technology International, 2016, 22(3): 246-255. DOI: 10.1177/1082013215593394.
[24] ZHU F M, DU B, LI J. Effect of ultrafine grinding on physicochemical and antioxidant properties of dietary fiber from wine grape pomace[J]. Food Science and Technology International, 2014, 20(1): 55-62. DOI: 10.1177/1082013212469619.
[25] 钟艳萍.水溶性膳食纤维的制备及性能研究[D].广州:华南理工大学,2011.
[26] 吴立根.加工对藜麦营养品质影响及机理研究[D].郑州:河南工业大学,2021. DOI: 10.27791/d.cnki.ghegy.2021.000538.
[27] ÖZKAYA B, TURKSOY S, ÖZKAYA H, et al. Dephytinization of wheat and rice brans by hydrothermal autoclaving process and the evaluation of consequences for dietary fiber content, antioxidant activity and phenolics[J]. Innovative Food Science & Emerging Technologies, 2017, 39: 209-215. DOI: 10.1016/j.ifset.2016.11.012.
[28] ÖZKAYA H, ÖZKAYA B, DUMAN B, et al. Effect of dephytinization by fermentation and hydrothermal autoclaving treatments on the antioxidant activity, dietary fiber, and phenolic content of oat bran[J]. Journal of Agricultural and Food Chemistry, 2017, 65(28): 5713-5719. DOI: 10.1021/acs.jafc.7b01698.
[29] ZHAO G H, HU M Q, LU X W, et al. Soaking, heating and high hydrostatic pressure treatment degrade the flavonoids in rice bran[J]. LWT, 2022, 154: 112732. DOI: 10.1016/j.lwt.2021.112732.
[30] 王伟.柑橘果皮全粉的制备及其粉体相关特性研究[D].武汉:华中农业大学,2013.
[31] RAGHAVENDRA S N, RASTOGI N K, RAGHAVARAO K S M S, et al. Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties[J]. European Food Research and Technology, 2004, 218(6): 563-567. DOI: 10.1007/s00217-004-0889-2.
[32] FEMENIA A, LEFEBVRE A C, THEBAUDIN J Y, et al. Physical and sensory properties of model foods supplemented with cauliflower fiber[J]. Journal of Food Science,1997, 62(4): 635-639. DOI: 10.1111/j.1365-2621.1997.tb15426.x.
[33] GONG Z Q, ZHANG M, MUJUMDAR A S, et al. Spray drying and agglomeration of instant bayberry powder[J]. Drying Technology, 2007, 26(1): 116-121. DOI: 10.1080/07373930701781751.
[34] CHAU C F, HUANG Y L. Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel ofCitrus sinensis L. Cv. Liucheng[J]. Journal of Agricultural and Food Chemistry, 2003, 51(9): 2615-2618. DOI: 10.1021/jf025919b.
[35] ZHAO G H, ZHANG R F, DONG L H, et al. Bound phenolics in rice bran dietary fibre released by different chemical hydrolysis methods: content, composition and antioxidant activities[J]. International Journal of Food Science & Technology, 2022, 57(9): 5909-5916. DOI: 10.1111/ijfs.15915.
[36] CHEN J L, GAO D X, YANG L T, et al. Effect of microfluidization process on the functional properties of insoluble dietary fiber[J]. Food Research International, 2013, 54(2): 1821-1827. DOI: 10.1016/j.foodres.2013.09.025.
[37] CHEN H, XIONG M, BAI T M, et al. Comparative study on the structure, physicochemical, and functional properties of dietary fiber extracts from quinoa and wheat[J]. LWT, 2021, 149: 111816. DOI: 10.1016/J.LWT.2021.111816.
[38] ZHU F M, DU B, XU B J. Superfine grinding improves functional properties and antioxidant capacities of bran dietary fibre from Qingke (hull-less barley) grown in Qinghai-Tibet Plateau, China[J]. Journal of Cereal Science, 2015,65: 43-47. DOI: 10.1016/j.jcs.2015.06.006.
[39] SEGAL L, CREELY J J, MARTIN A E, Jr, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794. DOI: 10.1177/004051755902901003.
[40] YAN H, BARBOSA-CÁNOVAS G V. Density changes in selected agglomerated food powders due to high hydrostatic pressure[J]. LWT-Food Science and Technology, 2001, 34(8): 495-501. DOI: 10.1006/fstl.2000.0724.
[41] CASTELLANOS A. The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders[J]. Advances in Physics, 2005, 54(4): 263-376. DOI: 10.1080/17461390500402657.
[42] LI Q, RUDOLPH V, WEIGL B, et al. Interparticle van der Waals force in powder flowability and compactibility[J]. International Journal of Pharmaceutics, 2004, 280(1/2): 77-93. DOI: 10.1016/j.ijpharm.2004.05.001.
[43] HUANG X, LIANG K H, LIU Q, et al. Superfine grinding affects physicochemical, thermal and structural properties of Moringa oleifera leaf powders[J]. Industrial Crops and Products, 2020, 151: 112472. DOI: 10.1016/j.indcrop.2020.112472.
[44] MATEOS-APARICIO I, MATEOS-PEINADO C, RUPÉREZ P. High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean[J]. Innovative Food Science & Emerging Technologies, 2010, 11(3): 445-450. DOI: 10.1016/j.ifset.2010.02.003.
[45] WANG Q, SHEN P Y, CHEN B C. Ultracentrifugal milling and steam heating pretreatment improves structural characteristics, functional properties, andin vitro binding capacity of cellulase modified soy okara residues[J]. Food Chemistry, 2022, 384: 132526. DOI: 10.1016/J.FOODCHEM.2022.132526.
[46] 金文筠,SHEHZAD H,严守雷,等.超微粉碎对藕节膳食纤维理化性质的影响[J].食品安全质量检测学报,2015,6(6):2071-2076. DOI: 10.19812/j.cnki.jfsq11-5956/ts.2015.06.019.
[47] CHAU C F, WEN Y L, WANG Y T. Effects of micronisation on the characteristics and physicochemical properties of insoluble fibres[J]. Journal of the Science of Food and Agriculture, 2006, 86(14): 2380-2386. DOI: 10.1002/jsfa.2628.
[48] 易甜,崔文文,王明锐,等.锦橙皮渣膳食纤维微粉化及其功能特性分析[J].食品科学,2019,40(10):8-14. DOI: 10.7506/spkx1002-6630-20180615-330.
[49] ZHAO G H, HU C Y, LUO H Y. Effects of combined microwave-hot-air-drying on the physicochemical properties and antioxidant activity of Rhodomyrtus tomentosa berry powder[J]. Journal of Food Measurement and Characterization, 2020, 14(3): 1433-1442. DOI: 10.1007/s11694-020-00393-5.
[50] ZHENG Y J, WANG X Y, SUN Y, et al. Effects of ultrafine grinding and cellulase hydrolysis separately combined with hydroxypropylation, carboxymethylation and phosphate crosslinking on the in vitro hypoglycaemic and hypolipidaemic properties of millet bran dietary fibre[J]. LWT, 2022, 172: 114210. DOI: 10.1016/J.LWT.2022.114210.
[51] 王丹丹.豆渣超高压、超微粉碎及超声波辅助化学处理的研究[D].郑州:河南农业大学,2013. DOI: 10.7666/d.Y2432476.
[52] KIM D, HANG D. High hydrostatic pressure treatment combined with enzymes increases the extractability and bioactivity of fermented rice bran[J]. Innovative Food Science & Emerging Technologies, 2012, 16: 191-197. DOI: 10.1016/j.ifset.2012.05.014.
[53] 赵广河,张名位,张瑞芬,等.气流超微粉碎对桃金娘果粉物理化学性质的影响[J].食品科学,2016,37(1):17-21. DOI: 10.7506/spkx1002-6630-201601004.
[54] KOH C, JANG M G, OH J M, et al. Changes in chemical composition and antioxidant activity of dried Citrus unshiu peel after roasting[J]. LWT, 2020, 131: 109612. DOI: 10.1016/j.lwt.2020.109612.
[55] 徐倩,叶怀义,叶暾昊,等.超高压对果胶聚半乳糖醛酸酶的影响[J].哈尔滨商业大学学报(自然科学版),2003(2):194-196,201. DOI: 10.19492/j.cnki.1672.0946.2003.02.020.
[56] FENG X Y, YU B, REGENSTEIN J M, et al. Effect of particle size on composition, physicochemical, functional, and structural properties of insoluble dietary fiber concentrate from citrus peel[J]. Food Science and Technology International, 2023, 29(3): 195-203. DOI: 10.1177/10820132211063973.
[57] 吴晓江,范浩伟,付桂明,等.过热蒸气处理对苦荞粉理化性质的影响[J].食品与发酵工业,2021,47(11):89-97. DOI: 10.13995/j.cnki.11-1802/ts.025748.
[58] AKBARI M, RAZAVI S H, KHODAIYAN F, et al. Fermented corn bran: A by-product with improved total phenolic content and antioxidant activity[J]. LWT, 2023, 184: 115090. DOI: 10.1016/J.LWT.2023.115090.
[59] CHEN Y, PAN H L, HAO S X, et al. Evaluation of phenolic composition and antioxidant properties of different varieties of Chinese citrus[J]. Food Chemistry, 2021, 364: 130413. DOI: 10.1016/J.FOODCHEM.2021.130413.
[60] 郑慧.苦荞麸皮超微粉碎及其粉体特性研究[D].杨凌:西北农林科技大学,2007.
[61] DANG T T, VASANTHAN T. Modification of rice bran dietary fiber concentrates using enzyme and extrusion cooking[J]. Food Hydrocolloids, 2019, 89: 773-782. DOI: 10.1016/j.foodhyd.2018.11.024.
[62] OUYANG H, WU L, HU Y, et al. Effect of steam explosion treatment on physicochemical, functional and structural properties of pomelo fruitlets[J]. LWT, 2023, 184: 114963. DOI: 10.1016/J.LWT.2023.114963.
[63] ZHAO X Y, CHEN J, CHEN F L, et al. Surface characterization of corn stalk superfine powder studied by FTIR and XRD[J]. Colloids and Surfaces B: Biointerfaces, 2013, 104: 207-212. DOI: 10.1016/j.colsurfb.2012.12.003.
[64] XU W L, CUI W G, LI W B, et al. Development and characterizations of super-fine wool powder[J]. Powder Technology, 2004, 140(1/2): 136-140. DOI: 10.1016/j.powtec.2003.12.010.
[65] HARADA T, TOKAI Y, KIMURA A, et al. Hydrolysis of crystalline cellulose to glucose in an autoclave containing both gaseous and liquid water[J]. RSC Advances, 2014, 4(51): 26838-26842. DOI: 10.1039/c4ra02396j.
[66] ROUHOU C M, ABDELMOUMEN S, THOMAS S, et al. Use of green chemistry methods in the extraction of dietary fibers from cactus rackets (Opuntia ficus indica): Structural and microstructural studies[J]. International Journal of Biological Macromolecules, 2018, 116: 901-910. DOI: 10.1016/j.ijbiomac.2018.05.090.
[67] CHEN P C, LIN C, CHEN M H, et al. The micronization process for improving the dietary value of okara (soybean residue) by planetary ball milling[J]. LWT, 2020, 132: 109848. DOI: 10.1016/j.lwt.2020.109848.
[68] ULLAH I, YIN T, XIONG S B, et al. Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling[J]. LWT-Food Science and Technology, 2017, 82: 15-22. DOI: 10.1016/j.lwt.2017.04.014.
[69] WANG D W, LIU X W, WANG K, et al. Impact of non-thermal modifications on the physicochemical properties and functionality of litchi pomace dietary fibre[J]. LWT, 2023, 182: 114878. DOI: 10.1016/J.LWT.2023.114878.
[70] WEN Y, NIU M, ZHANG B J, et al. Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments[J]. LWT, 2017, 75: 344-351. DOI: 10.1016/j.lwt.2016.09.012.
[71] ROPELEWSKA E. Thermal properties of fresh and dried cranberry (Vaccinium macrocarpon) fruits determined by differential scanning calorimetry and thermogravimetric analysis[J]. Journal of Food Process Engineering, 2019, 42(4): e13061. DOI: 10.1111/jfpe.13061.
[72] ZLATANOVIĆ S, OSTOJIĆ S, MICIĆ D, et al. Thermal behaviour and degradation kinetics of apple pomace flours[J]. Thermochimica Acta, 2019, 673: 17-25. DOI: 10.1016/j.tca.2019.01.009.
[73] ZHANG Y, LIAO J S, QI J R. Functional and structural properties of dietary fiber from citrus peel affected by the alkali combined with high-speed homogenization treatment[J]. LWT, 2020, 128: 109397. DOI: 10.1016/j.lwt.2020.109397.
[1] 王月蓉, 赵广河, 赵丰丽, 覃云斌, 陈静, 张弘. 脐橙皮水溶性膳食纤维提取工艺优化及其体外益生活性评价[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 101-109.
Viewed
Full text
46
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 46

  From Others local
  Times 8 38
  Rate 17% 83%

Abstract
53
Just accepted Online first Issue
0 0 53
  From Others local
  Times 47 6
  Rate 89% 11%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[2] 刘畅平, 宋树祥, 蒋品群, 岑明灿. 基于开关电容的差分无源N通道滤波器[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 52 -60 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[5] 翟思琪, 蔡文君, 朱苏, 李韩龙, 宋海亮, 杨小丽, 杨玉立. 汲取液溶质反向扩散与正渗透中膜污染的相互关系研究[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 30 -39 .
[6] 郑国权, 秦永丽, 汪晨祥, 葛仕佳, 闻倩敏, 蒋永荣. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40 -52 .
[7] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[8] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[9] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[10] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发