|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (1): 101-109.doi: 10.16088/j.issn.1001-6600.2024040309
王月蓉1,2,3, 赵广河1,2,3,4*, 赵丰丽1,2,3, 覃云斌1,2,3, 陈静1,2,3, 张弘1,2,3
WANG Yuerong1,2,3, ZHAO Guanghe1,2,3,4*, ZHAO Fengli1,2,3, QIN Yunbin1,2,3, CHEN Jing1,2,3, ZHANG Hong1,2,3
摘要: 以脐橙皮作为原料,采取超声协同纤维素酶辅助提取脐橙皮水溶性膳食纤维(SDF),通过单因素及响应面试验对脐橙皮SDF的提取工艺进行优化,并评价其体外益生活性。结果表明,超声协同酶解辅助提取脐橙皮SDF的优化工艺条件是:液料比16 mL/g、超声功率 45 W/L、超声时间40 min、纤维素酶添加量10.0 μL/g,该条件下脐橙皮SDF 提取得率为11.88%。体外发酵实验表明,超声协同酶解显著改善了SDF的体外益生活性。因此,超声协同酶解可被认为是一种对脐橙皮膳食纤维进行改性的优良方法,可为其在功能食品中的应用提供参考。
中图分类号: TS209
[1] JAKOBEK L, MATIĆ P. Non-covalent dietary fiber-polyphenol interactions and their influence on polyphenol bioaccessibility[J]. Trends in Food Science Technology, 2019, 83: 235-247. DOI: 10.1016/j.tifs.2018.11.024. [2] MA M M, MU T H. Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure[J]. Carbohydrate Polymers, 2016, 136: 87-94. DOI: 10.1016/j.carbpol.2015.09.030. [3] DANG T T, VASANTHAN T. Modification of rice bran dietary fiber concentrates using enzyme and extrusion cooking[J]. Food Hydrocolloids, 2019, 89: 773-782. DOI: 10.1016/j.foodhyd.2018.11.024. [4] SHAH R B, LI B, WANG L, et al. Health benefits of konjac glucomannan with special focus on diabetes[J]. Bioactive Carbohydrates and Dietary Fibre, 2015, 5(2): 179-187. DOI: 10.1016/j.bcdf.2015.03.007. [5] QIAO H Z, SHAO H M, ZHENG X J, et al. Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion[J]. Food Chemistry, 2021, 335:127522. DOI: 10.1016/j.foodchem.2020.127522. [6] ZHU Z Y, DONG F Y, LIU X C, et al. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia[J]. Carbohydrate Polymers, 2016, 140: 461-471. DOI: 10.1016/j.carbpol.2015.12.053. [7] HONG C J, CHEN S Y, HSU Y H, et al. Protective effect of fermented okara on the regulation of inflammation, the gut microbiota, and SCFAs production in rats with TNBS-induced colitis[J]. Food Research International, 2022, 157: 111390. DOI: 10.1016/j.foodres.2022.111390. [8] PANWAR D, SAINA A, PANESAR P S, et al. Unraveling the scientific perspectives of citrus by-products utilization: Progress towards circular economy[J]. Trends in Food Science Technology, 2021, 111: 549-562. DOI: 10.1016/J.TIFS.2021.03.018. [9] KIESERLING K, VU T M, DRUSCH S, et al. Impact of pectin-rich orange fibre on gel characteristics and sensory properties in lactic acid fermented yoghurt[J]. Food Hydrocolloids, 2019, 94: 152-163. DOI: 10.1016/j.foodhyd.2019.02.051. [10] DE MORAES CRIZEL T, JABLONSKI A, DE OLIVEIRA RIOS A, et al. Dietary fiber from orange byproducts as a potential fat replacer[J]. LWT-Food Science and Technology, 2013, 53(1): 9-14. DOI: 10.1016/j.lwt.2013.02.002. [11] WANG K L, LI M, WANG Y X, et al. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa)[J]. Food Hydrocolloids, 2021, 110:106162. DOI: 10.1016/j.foodhyd.2020.106162. [12] MA M M, MU T H. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin[J]. Food Chemistry, 2016, 194: 237-246. DOI: 10.1016/j.foodchem.2015.07.095. [13] 朱广成, 杨慧, 路风银, 等. 超声辅助酶法提取绿芦笋可溶性膳食纤维工艺条件优化[J]. 食品研究与开发, 2020, 41(20): 130-136. DOI: 10.12161/j.issn.1005-6521.2020.20.022. [14] 李晗, 范方宇, 戚建华, 等. 超声辅助酶法提取无籽刺梨渣膳食纤维及理化性质评价[J]. 食品科技, 2021, 46(4): 194-201. DOI: 10.13684/j.cnki.spkj.2021.04.030. [15] 张智, 宋伟, 闫建英, 等. 油茶粕膳食纤维的超声辅助酶法提取工艺优化及理化性质分析[J]. 食品工业科技, 2022, 43(18): 162-169.DOI: 10.13386/j.issn1002-0306.2021100124. [16] 魏决, 赵刚, 唐晓慧. 苦荞麦麸皮膳食纤维提取工艺的优化[J]. 食品科技, 2015, 40(9): 227-231. DOI: 10.13684/j.cnki.spkj.2015.09.049. [17] 张梦云. 麦麸膳食纤维的改性和应用及其对乳酸菌的益生效应[D]. 合肥:合肥工业大学, 2020. DOI: 10.27101/d.cnki.ghfgu.2020.000074. [18] 王天, 江含秀, 路丽妮, 等. 藜麦可溶性膳食纤维提取工艺优化及其抗氧化活性研究[J]. 中国食品添加剂, 2022, 33(2): 137-146. DOI: 10.19804/j.issn1006-2513.2022.02.018. [19] 王丹丹, 董文江, 赵建平, 等. 剪切乳化辅助酶法提取咖啡果皮可溶性膳食纤维[J]. 热带作物学报, 2019, 40(3): 567-575. DOI: 10.3969/j.issn.1000-2561.2019.03.022. [20] 巫永华, 刘梦虎, 孙悦, 等. 超声微波辅助酶法提取黑豆皮水溶性膳食纤维及理化特性分析[J]. 食品科技, 2020, 41(6): 8-14. DOI: 10.13386/j.issn1002-0306.2020.06.002. [21] 梁文康, 苏平, 魏丹. 复合酶法提取黄秋葵可溶性膳食纤维的工艺优化及其理化特性、结构表征[J]. 食品工业科技, 2020, 41(17): 199-205. DOI: 10.13386/j.issn1002-0306.2020.17.033. [22] 朱凤霞, 梁盈, 林亲录, 等. 响应面法优化超声辅助酶法提取米糠水溶性膳食纤维[J]. 食品工业科技, 2015, 36(14): 194-198. DOI: 10.13386/j.issn1002-0306.2015.14.032. [23] AKBARI-ALAVIJEH S, SOLEIMANIAN-ZAD S, SHEIKH-ZEINODDIN M, et al. Pistachio hull water-soluble polysaccharides as a novel prebiotic agent[J]. International Journal of Biological Macromolecules, 2018, 107(Pt A): 808-816. DOI: 10.1016/j.ijbiomac.2017.09.049. [24] 尹立晨, 童群义. 改性豆渣膳食纤维的理化性质、结构及其益生活性研究[J]. 食品与发酵工业, 2022, 48(3): 141-148. DOI: 10.13995/j.cnki.11-1802/ts.028365. |
[1] | 刘茜. 南方红豆杉提取物的抗氧化、抗肿瘤活性研究[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 55-59. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 30
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |