2025年04月13日 星期日

广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (1): 101-109.doi: 10.16088/j.issn.1001-6600.2024040309

• “生态保护与资源可持续利用”专辑 • 上一篇    下一篇

脐橙皮水溶性膳食纤维提取工艺优化及其体外益生活性评价

王月蓉1,2,3, 赵广河1,2,3,4*, 赵丰丽1,2,3, 覃云斌1,2,3, 陈静1,2,3, 张弘1,2,3   

  1. 1.广西师范大学 生命科学学院, 广西 桂林 541006;
    2.广西漓江流域景观资源保育与可持续利用重点实验室(广西师范大学),广西 桂林 541006;
    3.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    4.广西师范大学 应用生物学研究所,广西 桂林 541004
  • 收稿日期:2024-04-03 修回日期:2024-05-17 出版日期:2025-01-05 发布日期:2025-02-07
  • 通讯作者: 赵广河(1977—),男,河南南阳人,广西师范大学副教授,博士。E-mail:377325019@qq.com
  • 基金资助:
    桂林市科学研究与技术开发计划项目(20210217-18);广西科技厅重点研发计划项目(2021AB27009)

Optimization of Extraction Process of Navel Orange Peel Soluble Dietary Fiber and Its in vitro Prebiotic Activity Evaluation

WANG Yuerong1,2,3, ZHAO Guanghe1,2,3,4*, ZHAO Fengli1,2,3, QIN Yunbin1,2,3, CHEN Jing1,2,3, ZHANG Hong1,2,3   

  1. 1. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Key Laboratory of Ecology of Rare and Endangered Species and Enviromental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    4. Institute of Applied Biology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2024-04-03 Revised:2024-05-17 Online:2025-01-05 Published:2025-02-07

摘要: 以脐橙皮作为原料,采取超声协同纤维素酶辅助提取脐橙皮水溶性膳食纤维(SDF),通过单因素及响应面试验对脐橙皮SDF的提取工艺进行优化,并评价其体外益生活性。结果表明,超声协同酶解辅助提取脐橙皮SDF的优化工艺条件是:液料比16 mL/g、超声功率 45 W/L、超声时间40 min、纤维素酶添加量10.0 μL/g,该条件下脐橙皮SDF 提取得率为11.88%。体外发酵实验表明,超声协同酶解显著改善了SDF的体外益生活性。因此,超声协同酶解可被认为是一种对脐橙皮膳食纤维进行改性的优良方法,可为其在功能食品中的应用提供参考。

关键词: 脐橙皮, 水溶性膳食纤维, 超声波, 纤维素酶, 益生活性

Abstract: The soluble dietary fiber (SDF) in navel orange peel was extracted by ultrasonic wave combined with cellulase-assisted extraction method. The extraction process of SDF was optimized by single factor test and response surface methodology and its in vitro prebiotic activity was evaluated, so as to provide technical reference for developing high quality navel orange peel SDF. The results showed that the optimal conditions to extract orange peel SDF of ultrasonic wave combined with cellulase-assisted extraction method were as follows: liquid-solid ratio 16 mL/g, ultrasonic power 45 W/L, ultrasonic time 40 min and enzyme addition 10.0 μL/g. Under these conditions,the extraction yield of SDF was 11.88%. In vitro fermentation experiments showed that the SDF from modified navel orange peel by ultrasonic wave combined with cellulose treatment exhibited excellent probiotic activity. Therefore, ultrasonic wave combined with cellulase hydrolysis can be considered as an excellent method to modify dietary fiber of navel orange peel, which can provide reference for its application in functional foods.

Key words: navel orange peel, water-soluble dietary fiber, ultrasonic wave, cellulase, probiotic activity

中图分类号:  TS209

[1] JAKOBEK L, MATIĆ P. Non-covalent dietary fiber-polyphenol interactions and their influence on polyphenol bioaccessibility[J]. Trends in Food Science Technology, 2019, 83: 235-247. DOI: 10.1016/j.tifs.2018.11.024.
[2] MA M M, MU T H. Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure[J]. Carbohydrate Polymers, 2016, 136: 87-94. DOI: 10.1016/j.carbpol.2015.09.030.
[3] DANG T T, VASANTHAN T. Modification of rice bran dietary fiber concentrates using enzyme and extrusion cooking[J]. Food Hydrocolloids, 2019, 89: 773-782. DOI: 10.1016/j.foodhyd.2018.11.024.
[4] SHAH R B, LI B, WANG L, et al. Health benefits of konjac glucomannan with special focus on diabetes[J]. Bioactive Carbohydrates and Dietary Fibre, 2015, 5(2): 179-187. DOI: 10.1016/j.bcdf.2015.03.007.
[5] QIAO H Z, SHAO H M, ZHENG X J, et al. Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion[J]. Food Chemistry, 2021, 335:127522. DOI: 10.1016/j.foodchem.2020.127522.
[6] ZHU Z Y, DONG F Y, LIU X C, et al. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia[J]. Carbohydrate Polymers, 2016, 140: 461-471. DOI: 10.1016/j.carbpol.2015.12.053.
[7] HONG C J, CHEN S Y, HSU Y H, et al. Protective effect of fermented okara on the regulation of inflammation, the gut microbiota, and SCFAs production in rats with TNBS-induced colitis[J]. Food Research International, 2022, 157: 111390. DOI: 10.1016/j.foodres.2022.111390.
[8] PANWAR D, SAINA A, PANESAR P S, et al. Unraveling the scientific perspectives of citrus by-products utilization: Progress towards circular economy[J]. Trends in Food Science Technology, 2021, 111: 549-562. DOI: 10.1016/J.TIFS.2021.03.018.
[9] KIESERLING K, VU T M, DRUSCH S, et al. Impact of pectin-rich orange fibre on gel characteristics and sensory properties in lactic acid fermented yoghurt[J]. Food Hydrocolloids, 2019, 94: 152-163. DOI: 10.1016/j.foodhyd.2019.02.051.
[10] DE MORAES CRIZEL T, JABLONSKI A, DE OLIVEIRA RIOS A, et al. Dietary fiber from orange byproducts as a potential fat replacer[J]. LWT-Food Science and Technology, 2013, 53(1): 9-14. DOI: 10.1016/j.lwt.2013.02.002.
[11] WANG K L, LI M, WANG Y X, et al. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa)[J]. Food Hydrocolloids, 2021, 110:106162. DOI: 10.1016/j.foodhyd.2020.106162.
[12] MA M M, MU T H. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin[J]. Food Chemistry, 2016, 194: 237-246. DOI: 10.1016/j.foodchem.2015.07.095.
[13] 朱广成, 杨慧, 路风银, 等. 超声辅助酶法提取绿芦笋可溶性膳食纤维工艺条件优化[J]. 食品研究与开发, 2020, 41(20): 130-136. DOI: 10.12161/j.issn.1005-6521.2020.20.022.
[14] 李晗, 范方宇, 戚建华, 等. 超声辅助酶法提取无籽刺梨渣膳食纤维及理化性质评价[J]. 食品科技, 2021, 46(4): 194-201. DOI: 10.13684/j.cnki.spkj.2021.04.030.
[15] 张智, 宋伟, 闫建英, 等. 油茶粕膳食纤维的超声辅助酶法提取工艺优化及理化性质分析[J]. 食品工业科技, 2022, 43(18): 162-169.DOI: 10.13386/j.issn1002-0306.2021100124.
[16] 魏决, 赵刚, 唐晓慧. 苦荞麦麸皮膳食纤维提取工艺的优化[J]. 食品科技, 2015, 40(9): 227-231. DOI: 10.13684/j.cnki.spkj.2015.09.049.
[17] 张梦云. 麦麸膳食纤维的改性和应用及其对乳酸菌的益生效应[D]. 合肥:合肥工业大学, 2020. DOI: 10.27101/d.cnki.ghfgu.2020.000074.
[18] 王天, 江含秀, 路丽妮, 等. 藜麦可溶性膳食纤维提取工艺优化及其抗氧化活性研究[J]. 中国食品添加剂, 2022, 33(2): 137-146. DOI: 10.19804/j.issn1006-2513.2022.02.018.
[19] 王丹丹, 董文江, 赵建平, 等. 剪切乳化辅助酶法提取咖啡果皮可溶性膳食纤维[J]. 热带作物学报, 2019, 40(3): 567-575. DOI: 10.3969/j.issn.1000-2561.2019.03.022.
[20] 巫永华, 刘梦虎, 孙悦, 等. 超声微波辅助酶法提取黑豆皮水溶性膳食纤维及理化特性分析[J]. 食品科技, 2020, 41(6): 8-14. DOI: 10.13386/j.issn1002-0306.2020.06.002.
[21] 梁文康, 苏平, 魏丹. 复合酶法提取黄秋葵可溶性膳食纤维的工艺优化及其理化特性、结构表征[J]. 食品工业科技, 2020, 41(17): 199-205. DOI: 10.13386/j.issn1002-0306.2020.17.033.
[22] 朱凤霞, 梁盈, 林亲录, 等. 响应面法优化超声辅助酶法提取米糠水溶性膳食纤维[J]. 食品工业科技, 2015, 36(14): 194-198. DOI: 10.13386/j.issn1002-0306.2015.14.032.
[23] AKBARI-ALAVIJEH S, SOLEIMANIAN-ZAD S, SHEIKH-ZEINODDIN M, et al. Pistachio hull water-soluble polysaccharides as a novel prebiotic agent[J]. International Journal of Biological Macromolecules, 2018, 107(Pt A): 808-816. DOI: 10.1016/j.ijbiomac.2017.09.049.
[24] 尹立晨, 童群义. 改性豆渣膳食纤维的理化性质、结构及其益生活性研究[J]. 食品与发酵工业, 2022, 48(3): 141-148. DOI: 10.13995/j.cnki.11-1802/ts.028365.
[1] 刘茜. 南方红豆杉提取物的抗氧化、抗肿瘤活性研究[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 55-59.
Viewed
Full text
30
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 30

  From Others local
  Times 22 8
  Rate 73% 27%

Abstract
35
Just accepted Online first Issue
0 0 35
  From Others local
  Times 28 7
  Rate 80% 20%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[2] 刘畅平, 宋树祥, 蒋品群, 岑明灿. 基于开关电容的差分无源N通道滤波器[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 52 -60 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[5] 翟思琪, 蔡文君, 朱苏, 李韩龙, 宋海亮, 杨小丽, 杨玉立. 汲取液溶质反向扩散与正渗透中膜污染的相互关系研究[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 30 -39 .
[6] 郑国权, 秦永丽, 汪晨祥, 葛仕佳, 闻倩敏, 蒋永荣. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40 -52 .
[7] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[8] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[9] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[10] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发