2025年04月23日 星期三

广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (6): 244-250.doi: 10.16088/j.issn.1001-6600.2024011101

• “污水处理”专栏 • 上一篇    

肌注心脏毒素后小鼠肌肉生长相关基因表达变化研究

陈春1, 张瑞门2, 蒙丽娜3, 杨燕燕2, 吴超权1, 冯万有2,3*   

  1. 1.广西壮族自治区药品检验研究院 药理室,广西 南宁 530029;
    2.广西大学 动物科学技术学院,广西 南宁 530004;
    3.南宁师范大学 环境与生命科学学院,广西 南宁 530001
  • 收稿日期:2024-01-11 修回日期:2024-03-06 出版日期:2024-12-30 发布日期:2024-12-30
  • 通讯作者: 冯万有(1985—),男,黑龙江甘南人,南宁师范大学助理研究员, 博士。E-mail:fengwy2016@hotmail.com
  • 基金资助:
    广西大学高层次人才-助理教授-张瑞门项目(A3340051035);国家现代农业产业技术体系广西创新团队建设项目(nycytxgxcxtd-2021-09-01)

Expression Profiling of Related Genes of Muscle Growth in Mice After Intramuscular Cardiotoxin Injection

CHEN Chun1, ZHANG Ruimen2, MENG Lina3, YANG Yanyan2, WU Chaoquan1, FENG Wanyou2,3*   

  1. 1. Department of Pharmacology, Guangxi Institute for Drug Control, Nanning Guangxi 530029, China;
    2. College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China;
    3. School of Environmental and Life Sciences, Nanning Normal University, Nanning Guangxi 530001, China
  • Received:2024-01-11 Revised:2024-03-06 Online:2024-12-30 Published:2024-12-30

摘要: 本研究以雄性C57BL/6小鼠为实验动物,利用心脏毒素(cardiotoxin,CTX)处理构建肌肉损伤模型,采用组织切片HE染色方法分析肌肉组织的结构变化;以未经处理的实验动物为对照组,运用实时定量PCR(RT-qPCR)技术检测肌肉损伤组中肌肉分化基因、肌肉生长发育相关信号通路基因的表达情况。结果表明:在小鼠胫骨前肌一次性注射50 μL CTX(1 g/L),4 d后可引起肌肉损伤,肌肉显微结构明显被破坏,胫骨前肌质量与长度比值显著降低;与对照组相比,MyOD1、MyOGMYH1、MYH2等肌肉分化相关基因和AMPK、Notch、AKT、PI3K、mTOR等信号通路的标志基因(PRKAA1、NOTCH1、AKTPI3KmTOR)在CTX处理模型组胫骨前肌组织的表达显著下降。本研究成功构建小鼠肌肉损伤模型,检测了肌细胞分化相关基因和肌肉生长发育相关信号通路基因在肌肉损伤后的表达变化情况,为肌肉再生的分子调控机制研究和开发肌肉损伤治疗方法提供一定的理论基础。

关键词: 肌肉损伤, 损伤模型, 肌肉生长, 基因表达

Abstract: In this study, male C57BL/6 mice were used as experimental animals to establish muscle injury model by cardiotoxin (CTX) injection. Structural alterations of skeletal muscle were observed by the HE staining, and the expressions profiling of related genes of skeletal muscle growth and differentiation were detected by real-time quantitative PCR (RT-qPCR), the untreated mice were used as the control. The results revealed that there was significant muscle histologic alteration and tibialis anterior muscle weight-to-length ratio was decreased by the single injection of 50 μL CTX (1 g/L) into the mouse tibialis anterior muscle after 4 days. The expression of related genes for muscle differentiation, MyOD1, MyOG, MYH1, MYH2, AMPK, and mTOR signaling pathway marker genes (PRKAA1, NOTCH1, AKT, PI3K, mTOR) in the tibialis anterior muscle decreased significantly compared with those of the untreated group. This study successfully established the mouse muscle injury model after intramuscular Cardiotoxin injection by morphological examination and detection of related genes expression. The research provided a theoretical basis for molecular regulatory mechanisms for muscle regeneration and treatment methods for muscle injury.

Key words: muscle injury, damaging model, muscle growth, gene expression

中图分类号:  R685; Q819

[1] LI Z D, MCKENNA Z J, KUENNEN M R, et al. The potential role of exercise-induced muscle damage in exertional heat stroke[J]. Sports Medicine, 2021, 51(5): 863-872. DOI: 10.1007/s40279-021-01427-8.
[2] HOPPSTÄDTER J, VALBUENA PEREZ J V, LINNENBERGER R, et al. The glucocorticoid-induced leucine zipper mediates statin-induced muscle damage[J]. FASEB Journal, 2020, 34(3): 4684-4701. DOI: 10.1096/fj.201902557RRR.
[3] AOI W, NAITO Y, YOSHIKAWA T. Role of oxidative stress in impaired insulin signaling associated with exercise-induced muscle damage[J]. Free Radical Biology & Medicine, 2013, 65: 1265-1272. DOI: 10.1016/j.freeradbiomed.2013.09.014.
[4] FUKADA S I, AKIMOTO T, SOTIROPOULOS A. Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2020, 1867(9): 118742. DOI: 10.1016/j.bbamcr.2020.118742.
[5] LIM K S, LEE S H, LEE E A, et al. Effects of intergenic single nucleotide polymorphisms in the fast myosin heavy chain cluster on muscle fiber characteristics and meat quality in Berkshire pigs[J]. Meat Science, 2015, 110: 224-229. DOI: 10.1016/j.meatsci.2015.07.025.
[6] MURGIA M, NOGARA L, BARALDO M, et al. Protein profile of fiber types in human skeletal muscle: a single-fiber proteomics study[J]. Skeletal Muscle, 2021, 11(1): 24. DOI: 10.1186/s13395-021-00279-0.
[7] SELLERS R S, MAHMOOD S R, PERUMAL G S, et al. Phenotypic modulation of skeletal muscle fibers in LPIN1-deficient lipodystrophic (fld) mice[J]. Veterinary Pathology, 2019, 56(2): 322-331. DOI: 10.1177/0300985818809126.
[8] AHN J S, KIM D H, PARK H B, et al. Ectopic overexpression of porcine Myh1 increased in slow muscle fibers and enhanced endurance exercise in transgenic mice[J]. International Journal of Molecular Sciences, 2018, 19(10): 2959. DOI: 10.3390/ijms19102959.
[9] DE PAEPE B. Progressive skeletal muscle atrophy in muscular dystrophies: a role for toll-like receptor-signaling in disease pathogenesis[J]. International Journal of Molecular Sciences, 2020, 21(12): 4440. DOI: 10.3390/ijms21124440.
[10] ZHANG H, LI Y, SU W P, et al. Resveratrol attenuates mitochondrial dysfunction in the liver of intrauterine growth retarded suckling piglets by improving mitochondrial biogenesis and redox status[J]. Molecular Nutrition & Food Research, 2017, 61(5): 1600653. DOI: 10.1002/mnfr.201600653.
[11] WEN W X, CHEN X L, HUANG Z Q, et al. Resveratrol regulates muscle fiber type conversion via miR-22-3p and AMPK/SIRT1/PGC-1α pathway[J]. The Journal of Nutritional Biochemistry, 2020, 77: 108297. DOI: 10.1016/j.jnutbio.2019.108297.
[12] LI P Y, ZHANG S, SONG H, et al. Naringin promotes skeletal muscle fiber remodeling by the AdipoR1-APPL1-AMPK signaling pathway[J]. Journal of Agricultural and Food Chemistry, 2021, 69(40): 11890-11899. DOI: 10.1021/acs.jafc.1c04481.
[13] ZHANG H F, SHANG R J, BI P P. Feedback regulation of Notch signaling and myogenesis connected by MyoD-Dll1 axis[J]. PLoS Genetics, 2021, 17(8): e1009729. DOI: 10.1371/journal.pgen.1009729.
[14] OH M, KIM S Y, PARK S, et al. Phytochemicals in Chinese chive (Allium tuberosum) induce the skeletal muscle cell proliferation via PI3K/Akt/mTOR and Smad pathways in C2C12 cells[J]. International Journal of Molecular Sciences, 2021, 22(5): 2296. DOI: 10.3390/ijms22052296.
[15] TANG G, DU Y, GUAN H C, et al. Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3K/Akt/mTOR signals[J]. British Journal of Pharmacology, 2022, 179(1): 159-178. DOI: 10.1111/bph.15693.
[16] WANG M Q, HU R, WANG Y J, et al. Atractylenolide III attenuates muscle wasting in chronic kidney disease via the oxidative stress-mediated PI3K/AKT/mTOR pathway[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 1875471. DOI: 10.1155/2019/1875471.
[17] SUÁREZ-CALVET X, ALONSO-PÉREZ J, CASTELLVÍ I, et al. Thrombospondin-1 mediates muscle damage in brachio-cervical inflammatory myopathy and systemic sclerosis[J]. Neurology(R) Neuroimmunology & Neuroinflammation, 2020, 7(3): e694. DOI: 10.1212/nxi.0000000000000694.
[18] DOMA K, RAMACHANDRAN A K, BOULLOSA D, et al. The paradoxical effect of creatine monohydrate on muscle damage markers: a systematic review and meta-analysis[J]. Sports Medicine, 2022, 52(7): 1623-1645. DOI: 10.1007/s40279-022-01640-z.
[19] TSUCHIYA Y, KITAJIMA Y, MASUMOTO H, et al. Damaged myofiber-derived metabolic enzymes act as activators of muscle satellite cells[J]. Stem Cell Reports, 2020, 15(4): 926-940. DOI: 10.1016/j.stemcr.2020.08.002.
[20] 宋刚,唐晖,谢敏豪.跑台运动和饮食干预对不同肌纤维肌糖原的影响[J].广西师范大学学报(自然科学版),2009,27(1):88-91.DOI:10.3969/j.issn.1001-6600.2009.01.023.
[21] ZHANG R M, PAN Y, FENG W Y, et al. HDAC11 regulates the proliferation of bovine muscle stem cells through the notch signaling pathway and inhibits muscle regeneration[J]. Journal of Agricultural and Food Chemistry, 2022, 70(29): 9166-9178. DOI: 10.1021/acs.jafc.2c03384.
[22] 王开卓,宾石玉,李虹辉,等.翘嘴鳜生长抑制素基因的克隆及其表达分析[J].广西师范大学学报(自然科学版),2013,31(4):109-114.DOI: 10.3969/j.issn.1001-6600.2013.04.020.
[23] RENZINI A, MARRONCELLI N, CAVIOLI G, et al. Cytoplasmic HDAC4 regulates the membrane repair mechanism in Duchenne muscular dystrophy[J]. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13(2): 1339-1359. DOI: 10.1002/jcsm.12891.
[24] ZÚÑIGA-MUÑOZ A, GARCÍA-NIÑO W R, CARBÓ R, et al. The regulation of protein acetylation influences the redox homeostasis to protect the heart[J]. Life Sciences, 2021, 277: 119599. DOI: 10.1016/j.lfs.2021.119599.
[25] SIKORSKA M, DUTKIEWICZ M, ZEGROCKA-STENDEL O, et al. Beneficial effects of β-escin on muscle regeneration in rat model of skeletal muscle injury[J]. Phytomedicine, 2021, 93: 153791. DOI: 10.1016/j.phymed.2021.153791.
[26] SCHIAFFINO S. Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies[J]. The FEBS Journal, 2018, 285(20): 3688-3694. DOI: 10.1111/febs.14502.
[27] CHEN R, LEI S, JIANG T, et al. Roles of lncRNAs and circRNAs in regulating skeletal muscle development[J]. Acta Physiologica, 2020, 228(2): e13356. DOI: 10.1111/apha.13356.
[28] DOS SANTOS M, BACKER S, AURADÉ F, et al. A fast Myosin super enhancer dictates muscle fiber phenotype through competitive interactions with Myosin genes[J]. Nature Communications, 2022, 13(1): 1039. DOI: 10.1038/s41467-022-28666-1.
[1] 贺思诺, 李银玲, 周晶, 周洁, 林万华, 杨文贤. 急性肺损伤模型中Sdr9c7基因的作用研究[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 200-207.
[2] 汪建华, 李玉珑, 陈敦学, 朱鑫, 刘知行, 张建社, 褚武英, 宾石玉. 饥饿再投喂对鳜肌FSRP-1、FSRP-3和肠道PepT1基因表达的影响[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 144-149.
[3] 王开卓, 宾石玉, 李虹辉, 李玉珑, 刘知行, 张建社, 褚武英. 翘嘴鳜生长抑制素基因的克隆及其表达分析[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 109-114.
[4] 郭艳菊, 彭峰林. 黄酮对力竭运动大鼠心肌抗氧化与细胞凋亡的影响[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 143-148.
[5] 陈尤莺, 郑之, 孔祥增, 张胜元. 基于贝叶斯分类器的结肠癌数据分类[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 187-191.
Viewed
Full text
135
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 135

  From Others local
  Times 11 124
  Rate 8% 92%

Abstract
52
Just accepted Online first Issue
0 0 52
  From Others local
  Times 49 3
  Rate 94% 6%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1 -12 .
[2] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[5] 翟思琪, 蔡文君, 朱苏, 李韩龙, 宋海亮, 杨小丽, 杨玉立. 汲取液溶质反向扩散与正渗透中膜污染的相互关系研究[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 30 -39 .
[6] 郑国权, 秦永丽, 汪晨祥, 葛仕佳, 闻倩敏, 蒋永荣. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40 -52 .
[7] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[8] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[9] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[10] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发