广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (4): 216-228.doi: 10.16088/j.issn.1001-6600.2023120301

• 研究论文 • 上一篇    下一篇

亚热带森林不同类型土壤净氮转化对温度和湿度的响应

李顺利1,2, 何枢浩2, 陈荣枢1,2, 罗翠颖2, 江宸羊2, 梁建宏3,4, 朱婧1,2*   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    2.广西师范大学 环境与资源学院,广西 桂林 541006;
    3.中国地质科学院岩溶地质研究所,广西 桂林 541004;
    4.自然资源部/广西岩溶动力学重点实验室(中国地质科学院岩溶地质研究所),广西 桂林 541004
  • 收稿日期:2023-12-03 修回日期:2024-02-26 出版日期:2024-07-25 发布日期:2024-09-05
  • 通讯作者: 朱婧(1982—),女,广西桂林人,广西师范大学副教授,博士。E-mail:zhuj@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(41967005);广西自然科学基金(2020GXNSFBA159029)

Responses of Net Nitrogen Transformation to Temperature and Moisture in Different Types of Subtropical Forest Soils

LI Shunli1,2, HE Shuhao2, CHEN Rongshu1,2, LUO Cuiying2, JIANG Chenyang2, LIANG Jianhong3,4, ZHU Jing1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin Guangxi 541004, China;
    4. Key Laboratory of Karst Dynamics, MNR&GZAR (Institute of Karst Geology, Chinese Academy ofGeological Sciences), Guilin Guangxi 541004, China
  • Received:2023-12-03 Revised:2024-02-26 Online:2024-07-25 Published:2024-09-05

摘要: 为研究我国亚热带森林不同土壤净氮转化速率对温度和湿度的响应特征,本研究以广西广泛分布的酸性红壤与中性石灰土2种森林土壤为研究对象,通过土壤培养对比研究2种森林土壤净氨化、净硝化和净矿化速率对温度(5、15、25、35 ℃)和湿度(含水量分别为饱和持水量(WHC)的20%、40%、60%、80%)的响应。结果表明:2种土壤净氮转化速率对温度变化有较强的响应。酸性红壤的净氨化、净硝化和净矿化速率均随温度上升而降低,导致土壤净氮供应能力降低;相反地,中性石灰土的净硝化和净矿化速率随温度上升而增大,土壤有效氮通量增加,氮淋溶风险随之增加。土壤氮转化的温度敏感性(Q10值)分析表明,酸性红壤净氨化和净矿化速率的温度敏感区间为25~35 ℃;酸性红壤硝化速率和石灰土各净氮转化速率的敏感区间为15~25 ℃。土壤湿度增大促进了石灰土净硝化和净矿化速率,但对红壤的各净氮转化速率无显著影响。土壤钙含量对不同温度下氮转化速率有最高的解释率(28.0%)。因此,在全球变暖大背景下,在对亚热带森林保育、恢复及土地利用管理中,需重视不同土壤类型间氮转化对气候变化响应的差异性。

关键词: 森林土壤, 氮转化, 氮矿化, 硝化, 温度, 湿度, 响应, Q10

Abstract: In order to study the response mechanism of soil net nitrogen (N) transformation rates to temperature and moisture in subtropical forests, the study focused on two kinds of subtropical forest soils, an acidic red soil and a neutral limestone soil, which were widely distributed in Guangxi. Soil incubation experiments were conducted to compare the responses of net ammonification, nitrification, and N mineralization rates to different soil temperature (5, 15, 25, 35 oC) and moisture levels (20%, 40%, 60%, 80% water holding capacity, WHC). The results showed that net N transformation rates of both soils responded strongly to temperature changes. The net ammonification, nitrification and N mineralization rates of red soil decreased with increasing temperature, leading to a decrease in soil net N supply capacity. Conversely, the net nitrification and mineralization rates in limestone soil increased with increasing temperature, thereby increasing the bioavailable N flux as well as the risk of soil nitrogen leaching. Temperature sensitivity values (Q10) of soil N transformations indicated that the sensitivity temperature range of net ammonification and N mineralization rates of acidic red soil was 25 to 35 ℃. The sensitivity range of nitrification rates of red soil and net N transformation rates of limestone soil was 15 to 25 ℃. The increase of soil moisture promoted net nitrification and mineralization rates of limestone soil, but had no significant effect on the net N transformation rates of red soil. Soil calcium content had the highest explanatory rate (28.0%) in predicting N transformation rates at different temperatures. In conclusion, it is crucial to consider the varying responses of N cycling among different soil types to climate change in forest conservation, restoration and land use management of subtropical forests under the global change.

Key words: forest soil, nitrogen transformation, nitrogen mineralization, nitrification, temperature, moisture, response, Q10

中图分类号:  S154.36

[1] 李志杰, 杨万勤, 岳楷, 等. 温度对川西亚高山3种森林土壤氮矿化的影响[J]. 生态学报, 2017, 37(12): 4045-4052. DOI: 10.5846/stxb201603120441.
[2] 卓文花, 李丽香, 盘远方, 等. 桂林丘陵区不同坡位对灌木物种多样性和土壤因子的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 192-199. DOI: 10.16088/j.issn.1001-6600.2021090601.
[3] 朱婧, 刘鼎, 王珊, 等. 土壤养分及其化学计量特征对微生物碳利用效率的影响机制[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 376-387. DOI: 10.16088/j.issn.1001-6600.2022022810.
[4] 曹新光, 岳伟鹏, 邓洁. 北亚热带山地不同海拔土壤有机碳分布特征:以鄂东龟峰山为例[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 174-182. DOI: 10.16088/j.issn.1001-6600.2021010601.
[5] KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276. DOI: 10.1038/nrmicro.2018.9.
[6] 徐翎清, 李佳佳, 常晓, 等. 土壤氮矿化相关机理的研究进展[J]. 中国农学通报, 2022, 38(34): 97-101. DOI: 10.11924/j.issn.1000-6850.casb2022-0587.
[7] 林俊杰, 张帅, 刘丹, 等. 季节性温度升高对落干期消落带土壤氮矿化影响[J]. 环境科学, 2016, 37(2): 697-702. DOI: 10.13227/j.hjkx.2016.02.039.
[8] PROSSER J I, HINK L, GUBRY-RANGIN C, et al. Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies[J]. Global Change Biology, 2020, 26(1): 103-118. DOI: 10.1111/gcb.14877.
[9] 苏静, 王智慧, 李仕伟, 等. pH对酸性紫色土中硝化作用与硝化微生物的影响[J]. 西南大学学报(自然科学版), 2017, 39(3): 142-148. DOI: 10.13718/j.cnki.xdzk.2017.03.023.
[10] ZULKARNAEN N, 程谊, 张金波. 土地利用方式对红壤氮素矿化和硝化作用的影响[J]. 土壤通报, 2019, 50(5): 1210-1217. DOI: 10.19336/j.cnki.trtb.2019.05.29.
[11] 李平, 郎漫, 李煜姗, 等. 不同施肥处理对黑土硝化作用和矿化作用的影响[J]. 农业环境科学学报, 2015, 34(7): 1326-1332. DOI: 10.11654/jaes.2015.07.014.
[12] 李小飞, 杨曾奖, 徐大平, 等. 铲草和施肥对降香黄檀与印度檀香混交林土壤氮素矿化淋溶的影响[J]. 应用生态学报, 2019, 30(8): 2575-2582. DOI: 10.13287/j.1001-9332.201908.004.
[13] ELRYS A S, WANG J, METWALLY M A S. Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen[J]. Global Change Biology, 2021, 27(24): 6512-6524. DOI: 10.1111/gcb.15883.
[14] LI Z L, TIAN D S, WANG B X, et al. Microbes drive global soil nitrogen mineralization and availability[J]. Global Change Biology, 2019, 25(3): 1078-1088. DOI: 10.1111/gcb.14557.
[15] 赵伟烨, 王智慧, 曹彦强, 等. 石灰性紫色土硝化作用及硝化微生物对不同氮源的响应[J]. 土壤学报, 2018, 55(2): 479-489. DOI: 10.11766/trxb201709130312.
[16] 张晓晓, 王苗苗, 冯书珍, 等. 岩性与植被类型对喀斯特土壤AM真菌群落的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 158-167. DOI: 10.16088/j.issn.1001-6600.2019.02.020.
[17] GILLIAM F S, GALLOWAY J E, SARMIENTO J S. Variation with slope aspect in effects of temperature on nitrogen mineralization and nitrification in mineral soil of mixed hardwood forests[J]. Canadian Journal of Forest Research, 2015, 45(7): 958-962. DOI: 10.1139/cjfr-2015-0087.
[18] 赵宁, 张洪轩, 王若梦, 等. 放牧对若尔盖高寒草甸土壤氮矿化及其温度敏感性的影响[J]. 生态学报, 2014, 34(15): 4234-4241. DOI: 10.5846/stxb201207080957.
[19] LIU Y, HE N P, WEN X F, et al. Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems[J]. Agriculture, Ecosystems & Environment, 2016, 215: 40-46. DOI: 10.1016/j.agee.2015.09.012.
[20] 陈静, 李玉霖, 冯静, 等. 温度和水分对科尔沁沙质草地土壤氮矿化的影响[J]. 中国沙漠, 2016, 36(1): 103-110. DOI: 10.7522/j.issn.1000-694X.2014.00081.
[21] 周才平, 欧阳华, 刘金福. 温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响[J]. 植物生态学报, 2001, 25(2): 204-209. DOI: 10.1007/s11769-001-0027-z.
[22] 付粱晨, 丁宗巨, 唐茂, 等. 北京东灵山两种温带森林根际和非根际土壤酶活性、温度敏感性及矢量特征的季节动态[J]. 北京大学学报(自然科学版), 2022, 58(3): 503-516. DOI: 10.13209/j.0479-8023.2022.035.
[23] 唐海龙, 王景燕, 黄帅, 等. 华西雨屏区常绿阔叶林土壤氮矿化对温度和湿度变化的响应[J]. 甘肃农业大学学报, 2019, 54(2): 124-131. DOI: 10.13432/j.cnki.jgsau.2019.02.017.
[24] 石薇, 王景燕, 魏有波, 等. 水热条件对华西雨屏区柳杉人工林土壤氮矿化的影响[J]. 土壤通报, 2014, 45(6): 1430-1436. DOI: 10.19336/j.cnki.trtb.2014.06.022.
[25] 高真真, 段卫东, 胡坤, 等. 温度和水分对典型香型烟区植烟土壤氮素矿化的影响[J]. 土壤, 2019, 51(3): 442-450. DOI: 10.13758/j.cnki.tr.2019.03.004.
[26] 于芳芳, 李法云, 贾庆宇. 温度和水分对辽河保护区典型湿地土壤氮矿化的影响[J]. 生态科学, 2019, 38(6): 98-105. DOI: 10.14108/j.cnki.1008-8873.2019.06.014.
[27] 田冬, 高明, 徐畅. 土壤水分和氮添加对3种质地紫色土氮矿化及土壤pH的影响[J]. 水土保持学报, 2016, 30(1): 255-261. DOI: 10.13870/j.cnki.stbcxb.2016.01.046.
[28] 范思思, 王蕾, 王连峰. 水分变化模式对黑土氮素转化率的影响[J]. 大连交通大学学报, 2019, 40(1): 85-89. DOI: 10.13291/j.cnki.djdxac.2019.01.019.
[29] MILLER K S, GEISSELER D. Temperature sensitivity of nitrogen mineralization in agricultural soils[J]. Biology and Fertility of Soils, 2018, 54(7): 853-860. DOI: 10.1007/s00374-018-1309-2.
[30] 徐宪根, 周焱, 阮宏华, 等. 武夷山不同海拔高度土壤氮矿化对温度变化的响应[J]. 生态学杂志, 2009, 28(7): 1298-1302. DOI: 10.13292/j.1000-4890.2009.0217.
[31] 袁道先. 中国岩溶学[M]. 北京:地质出版社, 1994.
[32] 李菁. 岩溶区不同土地利用方式下土壤氮转化过程的钙影响机制[D]. 桂林:桂林理工大学, 2019.
[33] YAN Y J, DAI Q H, YANG Y Q, et al. Effects of vegetation restoration types on soil erosion reduction of a shallow karst fissure soil system in the degraded karst areas of Southwestern China[J]. Land Degradation & Development, 2023, 34(8): 2241-2255. DOI: 10.1002/ldr.4603.
[34] ZHOU L G, WANG X D, WANG Z Y, et al. The challenge of soil loss control and vegetation restoration in the karst area of Southwestern China[J]. International Soil and Water Conservation Research, 2020, 8(1): 26-34. DOI: 10.1016/j.iswcr.2019.12.001.
[35] WANG G, ZHU T B, ZHOU J X, et al. Slash-and-burn in karst regions lowers soil gross nitrogen (N) transformation rates and N-turnover[J]. Geoderma, 2022, 425: 116084. DOI: 10.1016/j.geoderma.2022.116084.
[36] 文冬妮. 我国南方岩溶区石灰土氮转化特点及其影响因素[D]. 海口:海南大学, 2020.
[37] 刘佩雯, 覃云斌, 莫慧婷, 等. 凋落物及根系输入变化对喀斯特地区檵木土壤养分和胞外酶的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 179-191. DOI: 10.16088/j.issn.1001-6600.2023031303.
[38] ARIAS P, BELLOUIN N, COPPOLA E, et al. Climate change 2021: the physical science basis[M]. Carnbridge: Cambridge University Press, 2021.
[39] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.
[40] 邬子俊, 段晓清, 李文卿, 等. 混交对亚热带针叶树根际土壤氮矿化和微生物特性的影响[J]. 生态学报, 2022, 42(20): 8414-8424. DOI: 10.5846/stxb202110072766.
[41] MASLOV M N, MASLOVA O A. Soil nitrogen mineralization and its sensitivity to temperature and moisture in temperate peatlands under different land-use management practices[J]. Catena, 2022, 210: 105922. DOI: 10.1016/j.catena.2021.105922.
[42] 周于波, 王景燕, 黄帅, 等. 水热条件对华西雨屏区檫木人工林土壤氮矿化的影响[J]. 云南农业大学学报(自然科学), 2019, 34(3): 479-485. DOI: 10.12101/j.issn.1004-390x(n).201807028.
[43] DAWES M A, SCHLEPPI P, HÄTTENSCHWILER S, et al. Soil warming opens the nitrogen cycle at the alpine treeline[J]. Global Change Biology, 2017, 23(1): 421-434. DOI: 10.1111/gcb.13365.
[44] 王帘里, 孙波. 温度和土壤类型对氮素矿化的影响[J]. 植物营养与肥料学报, 2011, 17(3): 583-591. DOI: 10.11674/zwyf.2011.0445.
[45] 徐军山, 苏雪, 贾志鹏, 等. 增温对结皮土壤系统氮转化速率及微生物生物量碳氮与酶活性的影响[J]. 土壤学报, 2021, 58(3): 788-797. DOI: 10.11766/trxb201911080393.
[46] 贺姣, 段鹏鹏, 李德军. 桂西北喀斯特和非喀斯特森林土壤初级氮转化速率及其影响因素[J]. 农业现代化研究, 2022, 43(5): 932-940. DOI: 10.13872/j.1000-0275.2022.0081.
[47] LIU Y, WANG C H, XU L, et al. Effect of grazing exclusion on the temperature sensitivity of soil net nitrogen mineralization in the Inner Mongolian grasslands[J]. European Journal of Soil Biology, 2020, 97(1): 103171. DOI: 10.1016/j.ejsobi.2020.103171.
[48] ELRYS A S, ALI A, ZHANG H M, et al. Patterns and drivers of global gross nitrogen mineralization in soils[J]. Global Change Biology, 2021, 27(22): 5950-5962. DOI: 10.1111/gcb.15851.
[49] 宋良翠, 马维伟, 李广, 等. 温度变化对尕海湿地不同退化梯度土壤氮矿化的影响[J]. 草业学报, 2021, 30(9): 27-37. DOI: 10.11686/cyxb2020347.
[50] 王帘里, 孙波. 培养温度和土壤类型对土壤硝化特性的影响[J]. 土壤学报, 2011, 48(6): 1173-1179.
[51] RONG G H, ZHANG X J, WU H Y, et al. Changes in soil organic carbon and nitrogen mineralization and their temperature sensitivity in response to afforestation across China’s Loess Plateau[J]. Catena, 2021, 202: 105226. DOI: 10.1016/j.catena.2021.105226.
[52] 李光敏, 陈伏生, 徐志文, 等. 间伐和林下植被剔除对毛竹林土壤氮矿化速率及其温度敏感性的影响[J]. 生态学报, 2019, 39(11): 4106-4115. DOI: 10.5846/stxb201806031240.
[53] 赵琦齐, 沈玉娟, 李平, 等. 温度对太湖湖滨带不同水分梯度土壤氮矿化的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(6): 147-150. DOI: 10.3969/j.issn.1000-2006.2011.06.030.
[54] 陈家瑞, 曹建华, 李涛, 等. 西南典型岩溶区土壤微生物数量研究[J]. 广西师范大学学报(自然科学版), 2010, 28(4): 96-100. DOI: 10.16088/j.issn.1001-6600.2010.04.015.
[55] 桂慧颖, 李雪江, 王景燕, 等. 温度和水分对华西雨屏区毛竹林土壤氮矿化的影响[J]. 四川农业大学学报, 2018, 36(6): 758-764. DOI: 10.16036/j.issn.1000-2650.2018.06.007.
[56] 李梦, 胡容, 蒲玉琳, 等. 若尔盖不同退化程度高寒沼泽湿地土壤氮矿化特征及温度效应[J]. 草地学报, 2021, 29(5): 1025-1033. DOI: 10.11733/j.issn.1007-0435.2021.05.019.
[57] 高丽, 侯向阳, 王珍, 等. 重度放牧对欧亚温带草原东缘生态样带土壤氮矿化及其温度敏感性的影响[J]. 生态学报, 2019, 39(14): 5095-5105. DOI: 10.5846/stxb201810082172.
[58] 赵文君, 崔迎春, 吴鹏, 等. 喀斯特原生乔木林和次生林土壤氮矿化特征[J]. 南京林业大学学报(自然科学版), 2017, 41(5): 13-17. DOI: 10.3969/j.issn.1000-2006.201612014.
[59] 辛亮, 王文章, 范锐锋. 水分含量对黑土和棕钙土有机氮矿化作用的影响[J]. 南方农业, 2022, 16(13): 128-131. DOI: 10.19415/j.cnki.1673-890x.2022.13.037.
[60] 葛晓敏, 王瑞华, 唐罗忠, 等. 不同温湿度条件下杨树人工林土壤氮矿化特征研究[J]. 中国农学通报, 2015, 31(10): 208-213. DOI: CNKI:SUN:ZNTB.0.2015-10-043.
[61] 黄容, 谢一平, 陈玉蓝, 等. 水分条件对不同类型土壤氮矿化及酶活性的影响[J]. 土壤, 2022, 54(5): 950-957. DOI: 10.13758/j.cnki.tr.2022.05.011.
[62] 刘顺, 杨洪国, 罗达, 等. 川西亚高山不同森林类型土壤呼吸和总硝化速率的季节动态[J]. 生态学报, 2019, 39(2): 550-560. DOI: 10.5846/stxb201712122237.
[63] HU P L, ZHAO Y, XIAO D, et al. Dynamics of soil nitrogen availability following vegetation restoration along a climatic gradient of a subtropical karst region in China[J]. Journal of Soils and Sediments, 2021, 21(6): 2167-2178. DOI: 10.1007/s11368-021-02915-0.
[64] WESTBROOK C J, DEVITO K J, ALLAN C J. Soil N cycling in harvested and pristine Boreal forests and peatlands[J]. Forest Ecology & Management, 2006, 234(1/3): 227-237. DOI: 10.1016/j.foreco.2006.07.004.
[65] LI D J, YI Y, HAO H, et al. Soil gross nitrogen transformations in typical karst and nonkarst forests, Southwest China[J]. Journal of Geophysical Research-Biogeosciences, 2017, 122(11): 2831-2840. DOI: 10.1002/2017jg003850.
[66] PROSSER J I, NICOL G W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation[J]. Trends in Microbiology, 2012, 20(11): 523-531. DOI: 10.1016/j.tim.2012.08.001.
[67] YE H J, TANG C Y, CAO Y J, et al. Contribution of ammonia-oxidizing archaea and bacteria to nitrification under different biogeochemical factors in acidic soils[J]. Environmental Science and Pollution Research, 2022, 12(29): 17209-17222. DOI: 10.1007/s11356-021-16887-8.
[1] 杨安全, 代红, 赵清松, 钟浩, 马辉. 计及源荷不确定性的智能小区能源系统两阶段鲁棒优化调度[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 70-85.
[2] 闫文文, 文中, 王爽, 李国祥, 王博宇, 吴艺. 基于AA-CAES电站和综合需求响应的供暖期弃风消纳策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 55-68.
[3] 肖飞, 康增彦, 王维红. 两种算法用于预测A2/O工艺脱氮条件[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 173-184.
[4] 梁家玮, 孙婉莹, 罗刘睿麒, 蒋邦平, 沈星灿. 刺激响应型纳米酶及其原位催化增强肿瘤治疗[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 300-306.
[5] 肖飞, 董文明, 王维红. 基于响应面法优化污水厂脱氮工艺研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 210-221.
[6] 郭辰, 韩彪, 潘翠, 吴洁敏, 陈姻月, 周飞, 甘甜, 尚常花. 假单胞菌去除Cr(Ⅵ)的条件优化[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 113-121.
[7] 莫燕华, 邹涵, 马姜明, 李玉凤, 菅瑞, 秦佳双, 宋尊荣, 林正忠. 喀斯特石山不同演替阶段檵木群落土壤温湿度变化[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 122-130.
[8] 连天培, 蒋品群, 宋树祥, 蔡超波, 庞中秋. 低温度系数高电源抑制比宽频带带隙基准电压源的设计[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 125-132.
[9] 王军, 韦笃取. 一种分段补偿带隙基准电压源的设计[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 17-23.
[10] 叶菊,孙立卿,吉守祥. 响应面法优化蓝花荆芥中总黄酮提取工艺[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 62-68.
[11] 廖艳达. 基于UDP的空地一体化网络域间路由实现[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 101-108.
[12] 陈美娟, 李传起, 罗德俊, 陆叶. 单个LPFG实现溶液温度和折射率测量的两种方法[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 1-5.
[13] 罗云演, 李容正, 李冰, 丁晨旭. 响应面优化多刺绿绒蒿总生物碱提取工艺[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 84-90.
[14] 杜雪松, 宾石玉, 林勇, 唐章生, 张永德, 曾兰, 杨慧赞, 陈忠. 基于ULCIZ和SIT的罗非鱼耐寒性能测定模型[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 134-139.
[15] 张永祥, 蔡德所, 易燃. 桂林市青狮潭水库消落带生态脆弱性及其影响因子[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 156-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵洁, 宋爽, 武斌. 图像USM锐化取证与反取证技术综述[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 1 -16 .
[2] 艾聪聪, 龚国利, 焦小雨, 田露, 盖中朝, 缑敬轩, 李慧. 毕赤酵母作为基础研究的新兴模式生物研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 17 -26 .
[3] 翟言豪, 王燕舞, 李强, 李景坤. 基于CiteSpace的三维荧光光谱技术对内陆水体中溶解性有机质研究的进展[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 34 -46 .
[4] 陈丽, 唐明珠, 郭胜辉. 智能汽车信息物理系统状态估计与执行器攻击重构[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 59 -69 .
[5] 李成乾, 石晨, 邓敏艺. 基于元胞自动机的Brugada综合征患者心电信号研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 86 -98 .
[6] 吕辉, 吕卫峰. 基于改进YOLOv5的眼底出血点检测算法[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 99 -107 .
[7] 易见兵, 彭鑫, 曹锋, 李俊, 谢唯嘉. 多尺度特征融合的点云配准算法研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 108 -120 .
[8] 李莉, 李昊泽, 李涛. 基于Raft的多主节点拜占庭容错共识机制[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 121 -130 .
[9] 赵小梅, 丁勇, 王海涛. 基于改进帝王蝶算法的最大似然DOA估计[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 131 -140 .
[10] 朱艳, 蔡静, 龙芳. 逐步Ⅰ型混合截尾下复合Rayleigh分布竞争失效产品部分步加寿命试验的统计分析[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 159 -169 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发