2025年04月23日 星期三

广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (6): 177-185.doi: 10.16088/j.issn.1001-6600.2023112205

• “污水处理”专栏 • 上一篇    下一篇

含参数分数阶微分方程边值问题正解的存在性

罗茜, 许勇强*   

  1. 闽南师范大学 数学与统计学院,福建 漳州 363000
  • 收稿日期:2023-11-22 修回日期:2024-01-11 出版日期:2024-12-30 发布日期:2024-12-30
  • 通讯作者: 许勇强(1976—), 男,福建漳浦人,闽南师范大学教授,博士。E-mail: yqx458@163.com
  • 基金资助:
    国家自然科学基金(11571159);福建省自然科学基金(2017J01562)

Existence of Positive Solutions for Boundary Value Problems of Fractional Differential Equations with Parameters

LUO Xi, XU Yongqiang*   

  1. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou Fujian 363000, China
  • Received:2023-11-22 Revised:2024-01-11 Online:2024-12-30 Published:2024-12-30

摘要: 本文考虑一类含参数且具有两项分数阶导数的Caputo型非零边值的分数阶微分方程问题。首先,借助拉普拉斯变换构造Green函数,将边值问题转化为等价的第二类Fredholm积分方程;然后,利用Green函数的性质、Guo-Krasnoselskii不动点定理和Leggett-Williams不动点定理,得到边值问题正解的存在性、不存在性以及多重性的充分条件;接着,将一般分数阶微分方程边值问题正解存在性的结果推广到含有两项分数阶导数的边值问题,得到更丰富的结论;最后,通过实例论证所得结论的正确性。

关键词: 两项分数阶导数, 边值问题, Guo-Krasnoselskii不动点定理, Leggett-Williams不动点定理, 正解的存在性

Abstract: A class of parametric boundary value problems with two-term fractional derivatives and non-zero boundary values is investigated in this paper. Firstly, Green’s function is constructed by Laplace transform, and the boundary value problem is transformed into the equivalent second kind of Fredholm integral equation. Secondly, by using the properties of Green’s function, Guo-Krasnoselskii fixed point theorem and Leggett-Williams fixed point theorem, sufficient conditions for the existence, nonexistence and multiplicity of positive solutions for boundary value problems of fractional differential equations are obtained. Thirdly, the existence of positive solutions for boundary value problems of usual fractional differential equations is extended to boundary value problems with two fractional derivatives. Finally, an example is given to illustrate the feasibility of the obtained results.

Key words: two-term fractional derivatives, boundary value problem, Guo-Krasnoselskii fixed point theorem, Leggett-Williams fixed point theorem, existence of positive solutions

中图分类号:  O175.25

[1] ELSAYED E M, HARIKRISHNAN S, KANAGARAJAN K. On the existence and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative[J]. Acta Mathematica Scientia, 2019,39(6): 1568-1578. DOI: 10.1007/s10473-019-0608-5.
[2] 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41-49. DOI: 10.16088/j.issn.1001-6600.2018.03.006.
[3] 周文学, 吴亚斌, 宋学瑶. 带p-Laplacian算子的分数阶微分方程边值问题正解的存在性与多重性[J]. 应用数学, 2023, 36(4): 997-1006. DOI: 10.13642/j.cnki.42-1184/o1.2023.04.020.
[4] ZHANG S Q. Positive solutions for boundary value problems of nonlinear fractional differential equations[J]. Electronic Journal of Differential Equations, 2006, 36: 1-12.
[5] 徐紫钰, 吴克晴. Caputo型分数阶微分系统正解的唯一性[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 92-104. DOI: 10.16088/j.issn.1001-6600.2023032202.
[6] CABADA A, WANG G T. Positive solutions of nonlinear fractional differential equations with integral boundary value conditions[J]. Journal of Mathematical Analysis and Applications, 2012, 389(1): 403-411. DOI: 10.1016/j.jmaa.2011.11.065.
[7] WAMG Y Q. The Green’s function of a class of two-term fractional differential equation boundary value problem and its applications[J]. Advances in Difference Equations, 2020,2020(1): 80. DOI: 10.1186/s13662-020-02549-5.
[8] 庞 杨, 韦煜明, 冯春华.一类分数阶微分方程两点边值问题正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35 (4): 68-75. DOI: 10.16088/j.issn.1001-6600.2017.04.010.
[9] BAI Z B. On positive solutions of a nonlinear fractional boundary value problem[J]. Nonlinear Analysis: Theory, Methods & APPlications, 2010, 72(2): 916-924.DOI: 10.1016/j.na.2009.07.033.
[10] YOU J, XU M R, SUN S R. Existence of boundary value problems for impulsive fractional differential equations with a parameter[J]. Communications on Applied Mathematics and Computation, 2021, 3(4): 585-604. DOI: 10.1007/s42967-021-00145-2.
[11] 冯海星, 翟成波. 一类含参数分数阶微分方程边值问题正解的性质研究[J]. 应用数学和力学, 2017, 38(7): 818-826. DOI: 10.21656/1000-0887.380124.
[12] CHEN Y. Existence and uniqueness of positive solutions for boundary of a fractional differential equation with a parameter[J]. Hacettepe Journal of Mathematics and Statistics, 2015,44(3): 659-667. DOI: 10.15672/HJMS. 20154510032.
[13] 邵宏宇, 王文霞. 一类含有参数的分数阶微分方程边值问题的单调算子方法[J]. 理论数学, 2021, 11(1): 7-15. DOI: 10.12677/PM.2021.111002.
[14] YANG C, GUO Y R, ZHAI C B. An integral boundary value problem of fractional differential equations with a sign-changed parameter in Banach spaces[J]. Complexity, 2021, 2021: 9567931. DOI: 10.1155/2021/9567931.
[15] HAO X N, ZHANG L Y, LIU L S. Positive solutions of higher order fractional integral boundary value problem with a parameter[J]. Nonlinear Analysis: Modelling and Control, 2019,24(2): 210-223. DOI: 10.15388/NA.2019.2.4.
[16] BAI Z B, ZHANG Y H. Solvability of fractional three-point boundary value problems with nonlinear growth[J]. Applied Mathematics and Computation, 2011, 218(5): 1719-1725. DOI: 10.1016/j.amc.2011.06.051.
[17] 王学彬. 拉普拉斯变换方法解分数阶微分方程[J]. 西南师范大学学报(自然科学版), 2016, 41(7): 7-12. DOI: 10.13718/j.cnki.xsxb.2016.07.00
[18] 董伟萍, 周宗福. 一类分数阶微分方程多点边值问题正解的存在性(英文)[J]. 应用数学, 2022, 35(1): 43-52. DOI: 10.13642/j.cnki.42-1184/o1.2022.01.003.
[1] 左佳斌, 贠永震. 一类分数阶微分方程的反周期边值问题[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 56-64.
[2] 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41-49.
[3] 闫荣君, 韦煜明, 冯春华. p-Laplacian算子的时滞分数阶微分方程边值问题3个正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 75-82.
[4] 韦煜明, 王勇, 唐艳秋, 范江华. p-Laplacian算子时滞微分方程边值问题解的存在唯一性[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 48-53.
Viewed
Full text
141
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 141

  From Others local
  Times 16 125
  Rate 11% 89%

Abstract
54
Just accepted Online first Issue
0 0 54
  From Others local
  Times 49 5
  Rate 91% 9%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1 -12 .
[2] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[5] 翟思琪, 蔡文君, 朱苏, 李韩龙, 宋海亮, 杨小丽, 杨玉立. 汲取液溶质反向扩散与正渗透中膜污染的相互关系研究[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 30 -39 .
[6] 郑国权, 秦永丽, 汪晨祥, 葛仕佳, 闻倩敏, 蒋永荣. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40 -52 .
[7] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[8] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[9] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[10] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发