广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (5): 130-140.doi: 10.16088/j.issn.1001-6600.2023110304

• 研究论文 • 上一篇    下一篇

复合分位回归的贝叶斯经验似然推断

王景炜, 胡超竹, 李翰芳, 罗幼喜*   

  1. 湖北工业大学 理学院,湖北 武汉 430068
  • 收稿日期:2023-11-03 修回日期:2023-12-10 出版日期:2024-09-25 发布日期:2024-10-11
  • 通讯作者: 罗幼喜(1979—),男,湖北黄冈人,湖北工业大学教授,博士。E-mail: youxiluo@163.com
  • 基金资助:
    国家自然科学基金青年基金(11701161);湖北省教育厅人文社科重点项目(20D043);湖北工业大学博士启动基金(BSQD2020103);湖北省教育厅哲学社会科学基金(22Y059)

Bayesian Empirical Likelihood Inference for Composite Quantile Regression

WANG Jingwei, HU Chaozhu, LI Hanfang, LUO Youxi*   

  1. School of Science, Hubei University of Technology, Wuhan Hubei 430068, China
  • Received:2023-11-03 Revised:2023-12-10 Online:2024-09-25 Published:2024-10-11

摘要: 本文将贝叶斯经验似然方法推广到复合分位数回归模型中。构造复合分位数回归模型的经验似然函数,在给定先验信息后,推导出未知参数的条件后验分布。考虑到未知参数后验分布形式较为复杂且有隐式方程约束,构造带约束条件的Metropolis-Hastings算法对模型参数进行点估计、置信区间估计及参数假设检验。计算机模拟仿真结果显示,当模型随机误差为厚尾分布时,贝叶斯经验似然复合分位回归法较复合分位回归法、分位回归法以及最小二乘法在估计偏差和方差上都有明显优势,尤其是数据含有较多异常点时,本文提出的方法最为稳健。利用新方法对一个医疗费用支出影响因素数据进行建模分析发现:较其他估计方法,无论是否删除数据中异常点,贝叶斯经验似然复合分位回归法得到的系数估计前后变化最小,这为实际建模过程时减少数据中未知异常点给模型带来的影响提供有益帮助。

关键词: 复合分位数回归, 贝叶斯经验似然, Metropolis-Hastings算法, 贝叶斯因子

Abstract: In this paper,the Bayesian empirical likelihood method is extended to the compound quantile regression model. Firstly,the empirical likelihood function of the compound quantile regression model is constructed, and the conditional posterior distribution of unknown parameters is derived after the prior information is given. Secondly, considering that the posterior distribution of unknown parameters is complex and has implicit equation constraints,a Metropolis-Hastings algorithm with constraints is constructed for point estimation,confidence interval estimation and parameter hypothesis testing of model parameters. The computer simulation results show that when the stochastic error of the model is a thick tail distribution,the Bayesian empirical likelihood compound quantile regression method proposed in this paper has more obvious advantages than the compound quantile regression method,the quantile regression method and the least square method in estimating deviation and variance. Especially when the data contains more anomalies,the proposed method is the most robust. Finally,the paper uses the new method to model and analyze the data of a medical expenditure influencing factor,and finds that compared with other estimation methods,the coefficient obtained by Bayes empirical likelihood compound quantile regression method changes the least before and after estimation,regardless of whether the abnormal points in the data are deleted or not. This provides useful assistance in reducing the impact of unknown outtiers in the date on the model during a real modeling process.

Key words: compound quantile regression, Bayesian empirical likelihood, Metropolis-Hastings algorithm, Bayes factor

中图分类号:  O212

[1] ZOU H,YUAN M. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics,2008,36(3):1108-1126.
[2] HUANG H W,CHEN Z X,et al. Bayesian composite quantile regression[J]. Journal of Statistical Computation and Simulation,2015,85(18):3744-3754.
[3] 张永霞,田茂再. 基于贝叶斯的部分线性单指标复合分位回归的研究及其应用[J]. 系统科学与数学,2021,41(5):1381-1399.
[4] 朱利荣,胡超竹,罗幼喜. 面板数据模型的惩罚复合分位回归方法[J]. 统计与决策,2022,38(13):40-45.
[5] 闫莉,陈夏. 缺失数据下广义线性模型的经验似然推断[J]. 统计与信息论坛,2013,28(2):14-17.
[6] 李乃医,李永明,韦盛学.缺失数据下非线性分位数回归模型的光滑经验似然推断[J].统计与决策,2015(1):97-99.
[7] ZHAO P X, ZHOU X S, LIN L. Empirical likelihood for composite quantile regression modeling[J]. Journal of Applied Mathematics and Computing,2015,48(1):321-333.
[8] 舒婷,罗幼喜,胡超竹,等.左删失数据的双惩罚贝叶斯Tobit分位回归方法[J].统计与决策,2023,39(5):27-33.
[9] LAZAR A N. Bayesian empirical likelihood[J]. Biometrika,2003,90(2):319-326.
[10] FANG K,Mukerjee R. Empirical-type likelihoods allowing posterior credible sets with frequentist validity:higher-order asymptotics[J]. Biometrika,2006,93(3):723-733.
[11] YANG Y,HE X. Bayesian empirical likelihood for quantile regression[J]. The Annals of Statistics,2012,40(2):1102-1131.
[12] ZHANG Y Q,TANG N S. Bayesian empirical likelihood estimation of quantile structural equation models[J]. Journal of Systems Science and Complexity,2017,30(1):122-138.
[13] CHAUDHURI S,MONDAL D,YIN T. Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),2017,79(1):293-320.
[14] VEXLER A,YU J,LAZAR N. Bayesian empirical likelihood methods for quantile comparisons[J]. Journal of the Korean Statistical Society,2017,46(4):518-538.
[15] ZHAO P Y,GHOSH M,RAO K N J,et al. Bayesian empirical likelihood inference with complex survey data[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),2020,82(1):155-174.
[16] 董小刚,刘新蕊,王纯杰,等. 右删失数据下加速失效模型的贝叶斯经验似然[J]. 数理统计与管理,2020,39(5):838-844.
[17] BEDOUI A,LAZAR A N. Bayesian empirical likelihood for ridge and lasso regressions[J]. Computational Statistics and Data Analysis,2020,145:106917-106917.
[18] ZHANG R,WANG D H. Bayesian empirical likelihood inference for the generalized binomial AR(1) model[J]. Journal of the Korean Statistical Society,2022,51(4):977-1004.
[19] LIU C S, LIANG H Y. Bayesian empirical likelihood of quantile regression with missing observations[J]. Metrika,2023,86(3):285-313.
[20] CHEN J,SITTER R R,WU C. Usingempirical likelihood methods to obtain range restricted weights in regression estimators for surveys[J]. Biometrika,2002,89(1):230-237.
[1] 李灿, 杨建波, 李荣. 部分线性变系数模型的贝叶斯复合分位数回归[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 117-129.
[2] 张军舰,赖廷煜,杨晓伟. VaR和ES的贝叶斯经验似然估计[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李文博, 董青, 刘超, 张奇. 基于对比学习的儿科问诊对话细粒度意图识别[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 1 -10 .
[2] 高盛祥, 杨元樟, 王琳钦, 莫尚斌, 余正涛, 董凌. 面向域外说话人适应场景的多层级解耦个性化语音合成[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 11 -21 .
[3] 朱格格, 黄安书, 覃盈盈. 基于Web of Science的国际红树林研究发展态势分析[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 1 -12 .
[4] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[5] 左钧元, 李欣彤, 曾子涵, 梁超, 蔡进军. 金属有机骨架基催化剂在糠醛选择性加氢反应中的应用研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 28 -38 .
[6] 谭全伟, 薛贵军, 谢文举. 基于VMD和RDC-Informer的短期供热负荷预测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 39 -51 .
[7] 刘畅平, 宋树祥, 蒋品群, 岑明灿. 基于开关电容的差分无源N通道滤波器[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 52 -60 .
[8] 王党树, 孙龙, 董振, 贾如琳, 杨黎康, 吴家驹, 王新霞. 变化负载下全桥LLC谐振变换器参数优化设计[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 61 -71 .
[9] 张锦忠, 韦笃取. PMSM混沌系统无初始状态约束的固定时间有界控制[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 72 -78 .
[10] 涂智荣, 凌海英, 李帼, 陆声链, 钱婷婷, 陈明. 基于改进YOLOv7-Tiny的轻量化百香果检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 79 -90 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发