|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (5): 130-140.doi: 10.16088/j.issn.1001-6600.2023110304
王景炜, 胡超竹, 李翰芳, 罗幼喜*
WANG Jingwei, HU Chaozhu, LI Hanfang, LUO Youxi*
摘要: 本文将贝叶斯经验似然方法推广到复合分位数回归模型中。构造复合分位数回归模型的经验似然函数,在给定先验信息后,推导出未知参数的条件后验分布。考虑到未知参数后验分布形式较为复杂且有隐式方程约束,构造带约束条件的Metropolis-Hastings算法对模型参数进行点估计、置信区间估计及参数假设检验。计算机模拟仿真结果显示,当模型随机误差为厚尾分布时,贝叶斯经验似然复合分位回归法较复合分位回归法、分位回归法以及最小二乘法在估计偏差和方差上都有明显优势,尤其是数据含有较多异常点时,本文提出的方法最为稳健。利用新方法对一个医疗费用支出影响因素数据进行建模分析发现:较其他估计方法,无论是否删除数据中异常点,贝叶斯经验似然复合分位回归法得到的系数估计前后变化最小,这为实际建模过程时减少数据中未知异常点给模型带来的影响提供有益帮助。
中图分类号: O212
[1] ZOU H,YUAN M. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics,2008,36(3):1108-1126. [2] HUANG H W,CHEN Z X,et al. Bayesian composite quantile regression[J]. Journal of Statistical Computation and Simulation,2015,85(18):3744-3754. [3] 张永霞,田茂再. 基于贝叶斯的部分线性单指标复合分位回归的研究及其应用[J]. 系统科学与数学,2021,41(5):1381-1399. [4] 朱利荣,胡超竹,罗幼喜. 面板数据模型的惩罚复合分位回归方法[J]. 统计与决策,2022,38(13):40-45. [5] 闫莉,陈夏. 缺失数据下广义线性模型的经验似然推断[J]. 统计与信息论坛,2013,28(2):14-17. [6] 李乃医,李永明,韦盛学.缺失数据下非线性分位数回归模型的光滑经验似然推断[J].统计与决策,2015(1):97-99. [7] ZHAO P X, ZHOU X S, LIN L. Empirical likelihood for composite quantile regression modeling[J]. Journal of Applied Mathematics and Computing,2015,48(1):321-333. [8] 舒婷,罗幼喜,胡超竹,等.左删失数据的双惩罚贝叶斯Tobit分位回归方法[J].统计与决策,2023,39(5):27-33. [9] LAZAR A N. Bayesian empirical likelihood[J]. Biometrika,2003,90(2):319-326. [10] FANG K,Mukerjee R. Empirical-type likelihoods allowing posterior credible sets with frequentist validity:higher-order asymptotics[J]. Biometrika,2006,93(3):723-733. [11] YANG Y,HE X. Bayesian empirical likelihood for quantile regression[J]. The Annals of Statistics,2012,40(2):1102-1131. [12] ZHANG Y Q,TANG N S. Bayesian empirical likelihood estimation of quantile structural equation models[J]. Journal of Systems Science and Complexity,2017,30(1):122-138. [13] CHAUDHURI S,MONDAL D,YIN T. Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),2017,79(1):293-320. [14] VEXLER A,YU J,LAZAR N. Bayesian empirical likelihood methods for quantile comparisons[J]. Journal of the Korean Statistical Society,2017,46(4):518-538. [15] ZHAO P Y,GHOSH M,RAO K N J,et al. Bayesian empirical likelihood inference with complex survey data[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),2020,82(1):155-174. [16] 董小刚,刘新蕊,王纯杰,等. 右删失数据下加速失效模型的贝叶斯经验似然[J]. 数理统计与管理,2020,39(5):838-844. [17] BEDOUI A,LAZAR A N. Bayesian empirical likelihood for ridge and lasso regressions[J]. Computational Statistics and Data Analysis,2020,145:106917-106917. [18] ZHANG R,WANG D H. Bayesian empirical likelihood inference for the generalized binomial AR(1) model[J]. Journal of the Korean Statistical Society,2022,51(4):977-1004. [19] LIU C S, LIANG H Y. Bayesian empirical likelihood of quantile regression with missing observations[J]. Metrika,2023,86(3):285-313. [20] CHEN J,SITTER R R,WU C. Usingempirical likelihood methods to obtain range restricted weights in regression estimators for surveys[J]. Biometrika,2002,89(1):230-237. |
[1] | 李灿, 杨建波, 李荣. 部分线性变系数模型的贝叶斯复合分位数回归[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 117-129. |
[2] | 张军舰,赖廷煜,杨晓伟. VaR和ES的贝叶斯经验似然估计[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 38-45. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |