|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (5): 117-129.doi: 10.16088/j.issn.1001-6600.2023102501
李灿, 杨建波, 李荣*
LI Can, YANG Jianbo, LI Rong*
摘要: 部分线性变系数模型由参数和非参数2部分组成,具有适应范围广和解释性强双重优点。针对该模型的参数估计问题,采用B样条方法逼近非参数部分的未知光滑函数,进而利用复合非对称拉普拉斯分布实现贝叶斯复合分位数回归,并基于Gibbs抽样算法推导出所有未知参数的后验分布,以获取参数的估计值。通过数值模拟对贝叶斯复合分位数回归与贝叶斯分位数回归、贝叶斯线性回归参数估计效果进行比较分析,结果显示:当误差服从非正态分布时,在均方误差准则下,贝叶斯复合分位数回归估计表现更优。基于上述3种方法对实例数据进行预测分析,结果表明:在平均绝对偏差和均方误差预测意义下,基于贝叶斯复合分位数回归的预测效果更好。
中图分类号: O212.1
[1] ZHANG W Y,LEE S Y,SONG X Y. Local polynomial fitting in semivarying coefficient model[J]. Journal of Multivariate Analysis,2002,82(1):166-188. DOI: 10.1006/jmva.2001.2012. [2] FAN J,HUANG T. Profile likelihood inferences on semiparametric varying-coefficient partially linear models[J]. Bernoulli,2005,11(6):1031-1057. DOI: 10.3150/bj/1137421639. [3] HU X M,WANG Z Z,ZHAO Z W. Empirical likelihood for semiparametric varying-coefficient partially linear errors-in-variables models[J]. Statistics & Probability Letters,2009,79(8):1044-1052. DOI: 10.1016/j.spl.2008.12.011. [4] SUN H,LIU Q. Robust empirical likelihood inference for partially linear varying coefficient models with longitudinal data[J]. Journal of Statistical Computation and Simulation,2023,93(10):1559-1579. DOI: 10.1080/00949655.2022.2145289. [5] KOENKER R,BASSETT G JR.Regression quantiles[J]. Econometrica: Journal of the Econometric Society,1978:33-50. DOI: 10.2307/1913643. [6] BO K,LI R Z,ZOU H. New efficient estimation and variable selection methods for semiparametric varing-coefficient partially linear models[J]. Annals of Statistics,2011,39(1):305-332. DOI: 10.1214/10-AOS842. [7] YANG J,LU F,YANG H. Quantile regression for robust inference on varying coefficient partially nonlinear models[J]. Journal of the Korean Statistical Society,2018,47(2):172-184. DOI: 10.1016/j.jkss.2017.12.002. [8] 田镇滔,张军舰.基于分位数方法的超高维删失数据的特征筛选[J].广西师范大学学报(自然科学版),2021,39(6):99-111. DOI: 10.16088/j.issn.1001-6600.2020122406. [9] WANG B H,LIANG H Y. Quantile regression of ultra-high dimensional partially linear varying-coefficient model with missing observations[J]. Acta Mathematica Sinica: English Series,2023,39(9):1701-1726. DOI: 10.1007/S10114-023-0667-3. [10] ZOU H,YUAN M. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics,2008,36(3):1108-1126. DOI: 10.1214/07-AOS507. [11] ZHANG R Q,LV Y Z,ZHAO W H,et al. Composite quantile regression and variable selection in single-index coefficient model[J]. Journal of Statistical Planning and Inference,2016,176:1-21. DOI: 10.1016/j.jspi.2016.04.003. [12] JIN J,HAO C Y,MA T F. B-spline estimation for partially linear varying coefficient composite quantile regression models[J]. Communications in Statistics-Theory and Methods,2019,48(21):5322-5335. DOI: 10.1080/03610926.2018.1510006. [13] 刘艳霞,芮荣祥,田茂再. 部分线性变系数模型的新复合分位数回归估计[J]. 应用数学学报,2021,44(2):159-174. DOI: 10.12387/C2021012. [14] ZOU Y,FAN G,ZHANG R. Composite quantile regression for heteroscedastic partially linear varying-coefficient models with missing censoring indicators[J]. Journal of Statistical Computation and Simulation,2023,93(3):341-365. DOI: 10.1080/00949655.2022.2108030. [15] HUANG H W,CHEN Z X. Bayesian composite quantile regression[J]. Journal of Statistical Computation and Simulation,2015,85(18):3744-3754. DOI: 10.1080/00949655.2015.1014372. [16] TIAN Y Z,LIAN H,TIAN M Z. Bayesian composite quantile regression for linear mixed-effects models[J]. Communications in Statistics-Theory and Methods,2017,46(15):7717-7731. DOI: 10.1080/03610926.2016.1161798. [17] ALHUSSEINIl F H H,GEORGESCU V. Bayesian composite Tobit quantile regression[J]. Journal of Applied Statistics,2018,45(4):727-739. DOI: 10.1080/02664763.2017.1299697. [18] TIAN Y Z, WANG L Y, WU X Q. et al. Gibbs sampler algorithm of Bayesian weighted composite quantile regression[J]. Chinese Journal of Applied Probability and Statistics, 2019, 35(2): 178-192. DOI: 10.3969/j.issn.1001-4268.2019.02.006. [19] 张永霞,田茂再. 基于贝叶斯的部分线性单指标复合分位回归的研究及其应用[J]. 系统科学与数学,2021,41(5):1381-1399. DOI: 10.12341/jssms20418. [20] YUAN X H,XIANG X F,ZHANG X R. Bayesian composite quantile regression for the single-index model[J]. Plos One,2023,18(5):e0285277. DOI: 10.1371/JOURNAL.PONE.0285277. [21] ALHAMZAWI R. Bayesian analysis of composite quantile regression[J]. Statistics in Biosciences,2016,8(2):358-373. DOI: 10.1007/s12561-016-9158-8. [22] KOZUMI H,KOBAYASHI G. Gibbs sampling methods for Bayesian quantile regression[J]. Journal of Statistical Computation and Simulation,2011,81(11):1565-1578. DOI: 10.1080/00949655.2010.496117. [23] TIAN R Q,XU D K,DU J,et al. Bayesian estimation for partially linear varying coefficient spatial autoregressive models[J]. Statistics and Its Interface,2022,15(1):105-113. DOI: 10.4310/21-SII682. [24] BARNDORFF-NIELSEN O E,SHEPHARD N. Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),2001,63(2):167-241. DOI: 10.1111/1467-9868.00282. [25] HE X M,FUNG W K,ZHU Z Y. Robust estimation in generalized partial linear models for clustered data[J]. Journal of the American Statistical Association,2005,100(472):1176-1184. DOI: 10.1198/016214505000000277. [26] JIANG R,QIAN W M,ZHOU Z G. Weighted composite quantile regression for partially linear varying coefficient models[J]. Communications in Statistics: Theory and Methods,2018,47(16):3987-4005. DOI: 10.1080/03610926.2017.1366522. |
[1] | 赵婷婷, 杨凤莲. Laplace方程柯西问题的B样条方法[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 118-129. |
[2] | 舒婷, 罗幼喜, 李翰芳. 面板数据贝叶斯双惩罚分位回归方法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 150-165. |
[3] | 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9-20. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |