广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (3): 118-129.doi: 10.16088/j.issn.1001-6600.2022041401

• 研究论文 • 上一篇    下一篇

Laplace方程柯西问题的B样条方法

赵婷婷, 杨凤莲*   

  1. 河海大学 理学院, 江苏 南京 210000
  • 收稿日期:2022-04-14 修回日期:2022-05-25 出版日期:2023-05-25 发布日期:2023-06-01
  • 通讯作者: 杨凤莲(1982—), 女, 福建三明人, 河海大学副教授, 博士。E-mail: yangfenglian@hhu.edu.cn
  • 基金资助:
    国家自然科学基金(11771120, 12271140); 河海大学中央高校基本科研业务费(B220202081)

B-Spline Method for the Cauchy Problem of the Laplace Equation

ZHAO Tingting, YANG Fenglian*   

  1. College of Science, Hohai University, Nanjing Jiangsu 210000, China
  • Received:2022-04-14 Revised:2022-05-25 Online:2023-05-25 Published:2023-06-01

摘要: Laplace方程柯西问题极其不适定,需要有效的数值算法进行求解,本文提出一种B样条方法求解此问题。首先在三次B样条函数生成的平移不变空间中给出柯西问题逼近解的表达形式;然后借助B样条基函数导数可用低阶样条基函数表示及方程的性质,写出问题的变分形式;接着,为了降低噪音的影响,提出Tikhonov正则化方法,以获得稳定的数值解;最后分别对矩形区域和含非光滑边界的区域进行数值实验,证明此方法的有效性。

关键词: 柯西问题, Laplace方程, 平移不变空间, 三次B样条函数, 正则化

Abstract: The Cauchy problem is extremely ill-posed and requires effective numerical algorithms to solve it. A B-spline method is proposed to solve the problem in this paper. Firstly, the approximate solution of the problem is given in the shift invariant space generated by cubic B-spline functions. Then, based on the properties of equation and B-spline basis function whose derivative can be expressed by low-order spline basis function, the variational form of the problem is obtained. Furthermore, Tikhonov regularization method is proposed to obtain stable numerical solutions in order to reduce the influence of noise. Finally, numerical experiments on rectangular region and the region with non-smooth boundary show that the proposed method is effective.

Key words: Cauchy problem, Laplace equation, shift invariant spaces, cubic B-spline function, regularization

中图分类号:  O241.82

[1] 程晋, 刘继军, 张波. 偏微分方程反问题: 模型、算法和应用[J]. 中国科学: 数学, 2019, 49(4): 643-666. DOI: 10.1360/N012018-00076.
[2] HADAMARD J. Lectures on Cauchy's problem in linear partial differential equations[M]. Oxford: Oxford University Press, 1923.
[3] BUKHGEIM A L, CHENG J, YAMAMOTO M. Conditional stability in an inverse problem of determining a non-smooth boundary[J]. Journal of Mathematical Analysis and Applications, 2000, 242 (1): 57-74. DOI: 10.1006/jmaa.1999.6654.
[4] ALESSANDRINI G, RONDI L, ROSSET E, et al. The stability for the Cauchy problem for elliptic equations[J]. Inverse Problems, 2009, 25(12): 123004. DOI: 10.1088/0266-5611/25/12/123004.
[5] 胡文. 变系数偏微分方程柯西反问题的无网格广义有限差分方法[D]. 青岛: 青岛大学, 2020.
[6] 魏昕婧, 潘月君, 张耀明. Laplace方程Cauchy问题的正则化间接边界元法[J]. 山东理工大学学报(自然科学版), 2016, 30(3): 57-60. DOI: 10.13367/j.cnki.sdgc.2016.03.014.
[7] KAZEMZADEH-PARSI M J, DANESHMAND F. Solution of geometric inverse heat conduction problems by smoothed fixed grid finite element method[J]. Finite Elements in Analysis & Design, 2009, 45(10): 599-611. DOI: 10.1016/j.finel.2009.03.008.
[8] WANG F J, FAN C M, HUA Q S, et al. Localized MFS for the inverse Cauchy problems of two-dimensional Laplace and biharmonic equations[J]. Applied Mathematics and Computation, 2020, 364(1): 124658-124671. DOI: 10.1016/j.amc.2019.124658.
[9] LIU C S, CHANG C W, CHIANG C Y. A regularized integral equation method for the inverse geometry heat conduction problem[J]. International Journal of Heat & Mass Transfer, 2008, 51(21/22): 5380-5388. DOI: 10.1016/j.ijheatmasstransfer.2008.02.043.
[10] SUN Y, ZHANG D Y, MA F M. A potential function method for the Cauchy problem of elliptic operators[J]. Journal of Mathematical Analysis and Applications, 2012, 395(1): 164-174. DOI: 10.1016/j.jmaa.2012.05.038.
[11] YANG F L, LING L, WEI T. An adaptive greedy technique for inverse boundary determination problem[J]. Journal of Computational Physics, 2010, 229(22): 8484-8496. DOI: 10.1016/j.jcp.2010.07.031.
[12] WU D F, XU T, RH S, et al. Meshless method based on wavelet basis function[J]. Journal of Jilin University, 2010, 40(3): 740-744. DOI: 10.3788/gzxb20103908.1438.
[13] ZHANG X M, ZENG W X. The regularization B-spline wavelet method for the inverse boundary problem of the Laplace equation from noisy data in an irregular domain[J]. Engineering Analysis with Boundary Elements, 2021, 125(4): 1-11. DOI: 10.1016/j.enganabound.2021.01.002.
[14] JOHNSON M J, SHEN Z W, XU Y H. Scattered data reconstruction by regularization in B-spline and associated wavelet spaces[J]. Journal of Approximation Theory, 2009, 159(2): 197-223. DOI: 10.1016/j.jat.2009.02.005.
[15] YANG J B, STAHL D, SHEN Z W. An analysis of wavelet frame based scattered data reconstruction[J]. Applied and Computational Harmonic Analysis, 2017, 42(3): 480-507. DOI: 10.1016/j.acha.2015.09.008.
[16] 范筱, 蒋英春. 混合范数条件下平移不变信号的非均匀平均采样[J]. 数学学报(中文版), 2018, 61(2): 289-300. DOI: 10.3969/j.issn.0583-1431.2018.02.008.
[17] ALDROUBI A, GRÖCHENIG K. Nonuniform sampling and reconstruction in shift-invariant spaces[J]. Siam Review, 2001, 43(4): 585-620. DOI: 10.1137/s0036144501386986.
[18] 覃潇潇,余波.利用四阶样条快速计算信号的希尔伯特变换[J]. 广西师范大学学报(自然科学版),2022, 40(4):126-135. DOI: 10.16088/j.issn.1001-6600.2021082704.
[19] 王仁宏, 李崇君, 朱春钢. 计算几何教程[M]. 北京:科学出版社, 2008:158-174.
[20] HANSEN P C. Regularization tools: A Matlab package for analysis and solution of discrete Ill-posed problems[J]. Numerical Algorithms, 1994,6(1): 1-35.
[1] 张映辉, 叶琴. 可压缩非守恒两相流模型[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 127-137.
[2] 杜锦丰, 王海荣, 梁焕, 王栋. 基于表示学习的跨模态检索方法研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 1-12.
[3] 蒋群群, 王林峰. 一类非线性p-Laplace方程的Liouville定理[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 116-124.
[4] 王胜军, 窦井波. 一类退化椭圆算子的强Hardy型不等式及应用[J]. 广西师范大学学报(自然科学版), 2010, 28(1): 18-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杜雪松,林勇,梁国琨,黄姻,宾石玉,陈忠,覃俊奇,赵怡. 两种罗非鱼的耐寒性能比较[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 174 -179 .
[2] 程瑞, 何明先, 钟春英, 罗树毅, 武正军. 野生与人工繁育鳄蜥游泳能力比较[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 79 -86 .
[3] 陈丹妮, 陈志林, 周善义. 中国蚁科昆虫名录——切叶蚁亚科(补遗)[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 87 -97 .
[4] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[5] 罗树毅, 黎永泰, 武正军, 程瑞, 陈耀还, 何家松. 广西大桂山鳄蜥的栖枝高度及其影响因素[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 182 -189 .
[6] 侯欠欠, 方志刚, 秦渝, 朱依文. 团簇Fe4P的成键及极化率探究[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 140 -146 .
[7] 曹新光, 岳伟鹏, 邓洁. 北亚热带山地不同海拔土壤有机碳分布特征——以鄂东龟峰山为例[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 174 -182 .
[8] 郭家宝, 毕硕本, 邱湘开, 张莉. 清代东北三省旱涝灾害时空特征分析[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 183 -196 .
[9] 张萍, 徐巧枝. 基于多感受野与分组混合注意力机制的肺结节分割研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 76 -87 .
[10] 喻思婷, 彭靖静, 彭振赟. 矩阵方程的秩约束最小二乘对称半正定解及其最佳逼近[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 136 -144 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发