|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (3): 118-129.doi: 10.16088/j.issn.1001-6600.2022041401
赵婷婷, 杨凤莲*
ZHAO Tingting, YANG Fenglian*
摘要: Laplace方程柯西问题极其不适定,需要有效的数值算法进行求解,本文提出一种B样条方法求解此问题。首先在三次B样条函数生成的平移不变空间中给出柯西问题逼近解的表达形式;然后借助B样条基函数导数可用低阶样条基函数表示及方程的性质,写出问题的变分形式;接着,为了降低噪音的影响,提出Tikhonov正则化方法,以获得稳定的数值解;最后分别对矩形区域和含非光滑边界的区域进行数值实验,证明此方法的有效性。
中图分类号: O241.82
[1] 程晋, 刘继军, 张波. 偏微分方程反问题: 模型、算法和应用[J]. 中国科学: 数学, 2019, 49(4): 643-666. DOI: 10.1360/N012018-00076. [2] HADAMARD J. Lectures on Cauchy's problem in linear partial differential equations[M]. Oxford: Oxford University Press, 1923. [3] BUKHGEIM A L, CHENG J, YAMAMOTO M. Conditional stability in an inverse problem of determining a non-smooth boundary[J]. Journal of Mathematical Analysis and Applications, 2000, 242 (1): 57-74. DOI: 10.1006/jmaa.1999.6654. [4] ALESSANDRINI G, RONDI L, ROSSET E, et al. The stability for the Cauchy problem for elliptic equations[J]. Inverse Problems, 2009, 25(12): 123004. DOI: 10.1088/0266-5611/25/12/123004. [5] 胡文. 变系数偏微分方程柯西反问题的无网格广义有限差分方法[D]. 青岛: 青岛大学, 2020. [6] 魏昕婧, 潘月君, 张耀明. Laplace方程Cauchy问题的正则化间接边界元法[J]. 山东理工大学学报(自然科学版), 2016, 30(3): 57-60. DOI: 10.13367/j.cnki.sdgc.2016.03.014. [7] KAZEMZADEH-PARSI M J, DANESHMAND F. Solution of geometric inverse heat conduction problems by smoothed fixed grid finite element method[J]. Finite Elements in Analysis & Design, 2009, 45(10): 599-611. DOI: 10.1016/j.finel.2009.03.008. [8] WANG F J, FAN C M, HUA Q S, et al. Localized MFS for the inverse Cauchy problems of two-dimensional Laplace and biharmonic equations[J]. Applied Mathematics and Computation, 2020, 364(1): 124658-124671. DOI: 10.1016/j.amc.2019.124658. [9] LIU C S, CHANG C W, CHIANG C Y. A regularized integral equation method for the inverse geometry heat conduction problem[J]. International Journal of Heat & Mass Transfer, 2008, 51(21/22): 5380-5388. DOI: 10.1016/j.ijheatmasstransfer.2008.02.043. [10] SUN Y, ZHANG D Y, MA F M. A potential function method for the Cauchy problem of elliptic operators[J]. Journal of Mathematical Analysis and Applications, 2012, 395(1): 164-174. DOI: 10.1016/j.jmaa.2012.05.038. [11] YANG F L, LING L, WEI T. An adaptive greedy technique for inverse boundary determination problem[J]. Journal of Computational Physics, 2010, 229(22): 8484-8496. DOI: 10.1016/j.jcp.2010.07.031. [12] WU D F, XU T, RH S, et al. Meshless method based on wavelet basis function[J]. Journal of Jilin University, 2010, 40(3): 740-744. DOI: 10.3788/gzxb20103908.1438. [13] ZHANG X M, ZENG W X. The regularization B-spline wavelet method for the inverse boundary problem of the Laplace equation from noisy data in an irregular domain[J]. Engineering Analysis with Boundary Elements, 2021, 125(4): 1-11. DOI: 10.1016/j.enganabound.2021.01.002. [14] JOHNSON M J, SHEN Z W, XU Y H. Scattered data reconstruction by regularization in B-spline and associated wavelet spaces[J]. Journal of Approximation Theory, 2009, 159(2): 197-223. DOI: 10.1016/j.jat.2009.02.005. [15] YANG J B, STAHL D, SHEN Z W. An analysis of wavelet frame based scattered data reconstruction[J]. Applied and Computational Harmonic Analysis, 2017, 42(3): 480-507. DOI: 10.1016/j.acha.2015.09.008. [16] 范筱, 蒋英春. 混合范数条件下平移不变信号的非均匀平均采样[J]. 数学学报(中文版), 2018, 61(2): 289-300. DOI: 10.3969/j.issn.0583-1431.2018.02.008. [17] ALDROUBI A, GRÖCHENIG K. Nonuniform sampling and reconstruction in shift-invariant spaces[J]. Siam Review, 2001, 43(4): 585-620. DOI: 10.1137/s0036144501386986. [18] 覃潇潇,余波.利用四阶样条快速计算信号的希尔伯特变换[J]. 广西师范大学学报(自然科学版),2022, 40(4):126-135. DOI: 10.16088/j.issn.1001-6600.2021082704. [19] 王仁宏, 李崇君, 朱春钢. 计算几何教程[M]. 北京:科学出版社, 2008:158-174. [20] HANSEN P C. Regularization tools: A Matlab package for analysis and solution of discrete Ill-posed problems[J]. Numerical Algorithms, 1994,6(1): 1-35. |
[1] | 张映辉, 叶琴. 可压缩非守恒两相流模型[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 127-137. |
[2] | 杜锦丰, 王海荣, 梁焕, 王栋. 基于表示学习的跨模态检索方法研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 1-12. |
[3] | 蒋群群, 王林峰. 一类非线性p-Laplace方程的Liouville定理[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 116-124. |
[4] | 王胜军, 窦井波. 一类退化椭圆算子的强Hardy型不等式及应用[J]. 广西师范大学学报(自然科学版), 2010, 28(1): 18-22. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |