广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 127-137.doi: 10.16088/j.issn.1001-6600.2021120703

• 综述 • 上一篇    下一篇

可压缩非守恒两相流模型

张映辉*, 叶琴   

  1. 广西师范大学 数学与统计学院, 广西 桂林 541006
  • 收稿日期:2021-12-07 修回日期:2022-01-13 出版日期:2022-09-25 发布日期:2022-10-18
  • 通讯作者: 张映辉(1981—), 男, 湖南祁阳人, 广西师范大学教授, 博导。E-mail: yinghuizhang@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11771150, 11571280); 广西自然科学基金(2019JJG110003, 2019AC20214)

Compressible Non-conservative Two-phase Flow Model

ZHANG Yinghui*, YE Qin   

  1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2021-12-07 Revised:2022-01-13 Online:2022-09-25 Published:2022-10-18

摘要: 可压缩非守恒两相流模型广泛应用于电力、核能、化学工艺、油气、低温空间、生物医学、微技术等。本文主要介绍流体压强相等且有毛细管效应、压强不相等且无毛细管效应、压强相等且无毛细管效应这3类可压缩非守恒两相流模型及其相关研究成果。特别地, 2种流体压强相等且无毛细管效应的高维可压缩非守恒两相流模型的线性系统含零特征根,使得该问题的数学分析变得十分复杂和困难, 至今, 该模型无任何数学成果, 这将是今后工作的重点。

关键词: 可压缩非守恒两相流模型, 毛细管效应, 柯西问题, 解的适定性, 衰减率

Abstract: The compressible non-conservative two-phase flow models are widely used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on.This paper makes a review on the study of three types of compressible non-conservative two-phase flow models with equal pressure and capillary effect, unequal pressure without capillary effect, and equal pressure without capillary effect. Then, introduces the research developments of these three types of compressible non-conservative two-phase flow models, respectively.In particular, the linear system of the high-dimensional compressible non-conservative two-phase flow model with equal pressure without capillary effect contains zero eigenvalue, which makes the mathematical analysis of this problem very difficult. The new model has no mathematical results so far, and will be the focus of future work.

Key words: compressible non-conservative two-phase flow model, capillary effect, Cauchy problem, well-posedness, decay rate

中图分类号: 

  • O29
[1]ISHII M. Thermo-fluid dynamic theory of two-phase flow[M]. Paris: Eyrolles, 1975.
[2]BEAR J. Dynamics of fluids in porous media[M]. Environmental Science Series, New York: Elsevier, 1972.
[3]BAHOURI H, CHEMIN J, DANCHIN R. Fourier analysis and nonlinear partial differential equations[M].Grundlehren der Mathematischen Wissenschaften, Heidelberg: Springer, 2011.
[4]GODLEWSKI E, RAVIART P A. Hyperbolic systems of conservation laws[M]. Paris: Ellipses, 1991.
[5]KOLEV N, LYCZKOWSKI R. Multiphase flow dynamics: Vol. 1: Fundamentalsz[M]. Berlin: Springer, 2003.
[6]NOVOTN M, POKORN A. Weak solutions for some compressible multicomponent fluid models[J]. Archive for Rational Mechanics and Analysis, 2020, 235(1): 355-403.
[7]PROSPERETTI A, TRYGGVASON G. Computational methods for multiphase flow[M].Cambridge: Cambridge University Press, 2007.
[8]YAO L, ZHU C J, GUO Z H. Blow-up criterion for 3d viscous liquid-gas two-phase flow model[J]. Journal of Mathematical Analysis and Applications, 2012, 395(1): 175-190.
[9]EVJE S. Global weak solutions for a compressible gas-liquid model with well-formation interaction[J]. Journal of Differential Equations, 2011, 251(8): 2352-2386.
[10]EVJE S. A compressible two-phase model with pressure-dependent well-reservoir interaction[J]. Siam Journal on Mathematical Analysis, 2013, 45(2): 518-546.
[11]EVJE S. Genuine two-phase flow dynamics with a free interface separating gas-liquid mixture from gas[J]. Siam Journal on Mathematical Analysis, 2013, 45(5): 2894-2923.
[12]EVJE S, FLATTEN T, FRIIS H. Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum[J].Nonlinear Analysis: Theory, Methods Applications, 2009, 11(11): 3864-3886.
[13]EVJE S, KARLSEN K. Analysis of a compressible gas-liquid model by oil well control operations[J]. Acta Mathematica Scientia, 2012, 32(1):295-314.
[14]EVJE S, KENNETH B, KARLSEN H. Global existence of weak solutions for a viscous two-phase model[J]. Journal of Differential Equations, 2008, 245(9): 2660-2703.
[15]EVJE S, KARLSEN K. Global weak solutions for a viscous liquid-gas model with singular pressure law[J].Communications on Pure Applied Analysis, 2009, 8(6): 1867-1894.
[16]EVJE S, LIU Q Q, ZHU C J. Asymptotic stability of the compressible gas-liquid model with well-formation interaction and gravity[J]. Journal of Differential Equations, 2014, 257(9): 3226-3271.
[17]EVJE S, SOLEN S. Relaxation limit of a compressible gas-liquid model with well-reservoir interaction[J]. Zeitschrift für Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathématiques et de Physique Appliquées, 2017, 68(1): 23-25.
[18]EVJE S, WANG W J, WEN H Y. Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model[J].Archive for Rational Mechanics Analysis, 2016, 221(3):1285-1316.
[19]FRIIS H, EVJE S. Asymptotic behavior of a compressible two-phase model with well-formation interaction[J]. Journal of Differential Equations, 2013, 254(9): 3957-3993.
[20]洪广益.可压缩Navier-Stokes方程组及相关模型解的最优衰减率研究[D]. 广州:华南理工大学, 2019.
[21]WANG Y H, WEN H Y, YAO L. On a non-conservative compressible two-fluid model in a bounded domain: global existence and uniqueness[J].Journal of Mathematical Fluid Mechanics, 2021, 23(1): 4-24.
[22]王盈辉. 三维非守恒可压缩两相流模型的时间周期解[D]. 西安:西北大学, 2018.
[23]WEN H Y, YAO L, ZHU C J. A blow-up criterion of strong solution to a 3d viscous liquid-gas two-phase flow model with vacuum[J]. Journal de Mathématiques Pures et Appliquées, 2012, 97(3): 204-229.
[24]WEN H Y, YAO L, ZHU C J. Review on mathematical analysis of some two-phase flow models[J]. Acta Mathematica Scientia (Series B, English Edition), 2018, 38(5): 1617-1636.
[25]杨静. 关于混合流体力学中一些问题的研究[D]. 西安:西北大学,2015.
[26]杨静. 三维粘性液体-气体两相流模型真空问题的整体经典解存在性[D]. 西安:西北大学, 2012.
[27]YAO L, ZHANG T, ZHU C J. Existence and asymptotic behavior of global weak solutions to a 2d viscous liquid-gas two-phase flow model[J]. Siam Journal on Mathematical Analysis, 2010, 42(4): 1874-1897.
[28]YAO L, ZHU C J. Free boundary value problem for a viscous two-phase model with mass-dependent viscosity[J].Journal of Differential Equations, 2009, 247(10): 2705-2739.
[29]BRESCH D, DESJARDINS B, GHIDAGLIA J, et al. Global weak solutions to a generic two-fluid model[J]. Archive for Rational Mechanics and Analysis, 2010, 196(2): 599-629.
[30]CUI H B, WANG W J, YAO L, et al. Decay rates for a nonconservative compressible generic two-fluid model[J]. Siam Journal on Mathematical Analysis, 2016,48(1): 470-512.
[31]LI Y, WANG H Q, WU G C, et al. Global existence and decay rates for a generic compressible two-fluid model[EB/OL]. (2021-08-16)[2021-12-07]. https://arxiv.org/abs/2108.06974.
[32]WANG H Q, WANG J, WU G C, et al. Optimal decay rates of a non-conservative compressible two-phase fluid model[EB/OL]. (2020-10-22)[2021-12-07]. https://arxiv.org/abs/2010.11509v1.
[33]BRESCH D, HUANG X D, LI J. Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system[J]. Communications in Mathematical Physics, 2012, 309(3): 737-755.
[1] 包剑飞, 张杜鹃. 旅游产业与区域经济耦合协调度研究——以长江三角洲城市群为例[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 117-127.
[2] 王涵, 张映辉. 模拟趋化现象的三维双曲-抛物系统的最优衰减率[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 125-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨州, 范意兴, 朱小飞, 郭嘉丰, 王越. 神经信息检索模型建模因素综述[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 1 -12 .
[2] 赵东江, 马松艳, 田喜强. CoSe2/C催化剂在电催化氧还原中的应用研究进展[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 30 -43 .
[3] 王涵, 张映辉. 模拟趋化现象的三维双曲-抛物系统的最优衰减率[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 125 -131 .
[4] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[5] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[6] 帖军, 隆娟娟, 郑禄, 牛悦, 宋衍霖. 基于SK-EfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 104 -114 .
[7] 翁烨, 邵德盛, 甘淑. 等式约束病态最小二乘的主成分Liu估计解法[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 115 -125 .
[8] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[9] 贺青, 刘剑, 韦联福. 微弱电磁信号的物理极限检测:单光子探测器及其研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 1 -23 .
[10] 田芮谦, 宋树祥, 刘振宇, 岑明灿, 蒋品群, 蔡超波. 逐次逼近型模数转换器研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 24 -35 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发