|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (2): 125-131.doi: 10.16088/j.issn.1001-6600.2021061201
王涵, 张映辉*
WANG Han, ZHANG Yinghui*
摘要: 本文研究一个模拟趋化现象的三维双曲-抛物系统的Cauchy问题解的大时间行为, 得到其解及其各阶空间导数的最优时间衰减率。跟已有结果相比,本文主要创新在于给出解的最高阶空间导数的最优衰减率,且该衰减率与热方程的衰减率一样。研究方法主要基于高频-低频分解和精细的能量估计。
中图分类号:
[1] OTHMER H G, STEVENS A. Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks[J]. SIAM Journal on Applied Mathematics, 1997, 57(4): 1044-1081. [2] LEVINE H A, SLEEMAN B D. A system of reaction diffusion equations arising in the theory of reinforced random walks[J]. SIAM Journal on Applied Mathematics, 1997, 57(3): 683-730. [3] GUO J, XIAO J X, ZHAO H J, et al. Global solutions to a hyperbolic-parabolic coupled system with large initial data[J]. Acta Mathematica Scientia, 2009, 29(3): 629-641. [4] XIE W J, ZHANG Y H, XIAO Y D, et al. Global existence and convergence rates for thestrong solutions in H2 to the 3D chemotaxis model[J]. Journal of Applied Mathematics, 2013, 2013(1): 1-9. [5] ZHANG M, ZHU C J. Global existence of solutions to a hyperbolicparabolic system[J]. Proceedings of the American Mathematical Society, 2007, 135(4): 1017-1027. [6] 张映辉, 谭忠, 赖柏顺. 一个模拟趋化现象的广义双曲-抛物系统的光滑解的全局分析[J]. 数学年刊A辑, 2012, 33(1): 27-38. [7] ZHANG Y H, TAN Z, SUN M B. Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system[J]. Nonlinear Analysis: Real World Applications, 2013, 14(1): 465-482. [8] ZHANG Y H, DENG H Y, SUN M B. Global analysis of smooth solutions to a hyperbolic-parabolic coupled system[J]. Frontiers of Mathematics in China, 2013, 8(6): 1437-1460. [9] ZHANG Y H, XIE W J. Global existence and exponential stability for the strong solutions in H2 to the 3-D chemotaxis model[J]. Boundary Value Problems, 2015, 116: 1-13. [10] LI D, PAN R H, ZHAO K. Quantitative decay of a one-dimensional hybrid chemotaxis model with large data[J]. Nonlinearity, 2015, 28(7): 2181-2210. [11] 涂馨予, 穆春来, 郑攀. 带有流晕限制的拟线性趋化模型解的整体有界性[J]. 中国科学: 数学, 2021, 51(6): 1003-1012. [12] 张婕燕, 辛巧, 穆春来. 具有非线性扩散的趋化模型弱解的有界性[J]. 西南大学学报(自然科学版), 2021, 43(5): 88-95. [13] 王曦, 刘祖汉, 周玲. 具不同分数阶扩散趋化模型的衰减估计[J]. 数学年刊A辑, 2020, 41(2): 175-200. [14] 张映辉, 谭忠, 孙明保. 一个耦合双曲-抛物系统的全局光滑解[J]. 数学年刊A辑, 2013, 34(1): 29-46. [15] LI D, PAN R H, ZHAO K. On a hybrid type chemotaxis model on bounded domains with large data[J]. SIAM Journal on Applied Mathematics, 2012, 72(7): 417-443. [16] HAO C C. Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces[J]. Zeitschrift für Angewandte Mathematik und Physik, 2012, 63: 825-834. [17] LI D, LI T, ZHAO K. On a hyperbolic-parabolic system modeling chemotaxis[J]. Mathematical Models and Methods in Applied Sciences, 2011, 21(8): 1631-1650. [18] ZHANG Y H, LI C, XIE W J. Decay of a 3-D hyperbolic parabolic system modeling chemotaxis[J]. Journal of Information and Optimization Sciences, 2018, 39(7): 1505-1525. [19] NIRENBERG L. On elliptic partial differential equations[J]. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1959, 13(2): 115-162. [20] MAJDA A J, BERTOZZI A L. Vorticity and incompressible flow[M]. Cambridge: Cambridge University Press, 2002. [21] JU N. Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space[J]. Communications in Mathematical Physics, 2004, 251: 365-376. |
[1] | 包剑飞, 张杜鹃. 旅游产业与区域经济耦合协调度研究——以长江三角洲城市群为例[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 117-127. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |